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Abstract

In this paper we consider two processes driven by Brownian motions plus drift and jumps with

infinite activity. Given discrete observations on a finite time horizon, we study the truncated (thresh-

old) realized covariance ˆIC to estimate the integrated covariation IC between the two Brownian

parts and we establish how fast ˆIC converges when the small jumps of the processes are Lévy. We

find that the speed is heavily influenced by the small jumps dependence structure other than by

their jump activity indices. This work follows Mancini and Gobbi (2011) and Jacod (2008), where

the asymptotic normality of ˆIC was obtained when the jump components have finite activity or fi-

nite variation. Separating the sources of covariation (IC and co-jumps) of two financial assets has

important applications in portfolio risk management.

Keywords: Brownian correlation coefficient, integrated covariance, co-jumps, stable Lévy jumps,

threshold estimator.

JEL classification : C1, C3

1 Introduction

We consider two state variables evolving as follows

dX
(1)
t = a

(1)
t dt + σ

(1)
t dW

(1)
t + dZ

(1)
t ,

dX
(2)
t = a

(2)
t dt + σ

(2)
t dW

(2)
t + dZ

(2)
t ,

(1)

for t ∈ [0, T ], T fixed, where W
(2)
t = ρtW

(1)
t +

√

1 − ρ2
t W

(3)
t ; W (1) = (W

(1)
t )t∈[0,T ] and W (3) =

(W
(3)
t )t∈[0,T ] are independent Wiener processes. Z(1) and Z(2) are correlated pure jump processes. Given

discrete equally spaced observations X
(1)
ti

, X
(2)
ti

, i = 1..n, in the interval [0, T ], with ti = ih, h = T
n ,

we are interested in the identification of the dependence amount between the two Brownian parts,

namely the integrated covariation IC
.
=

∫ T

0
ρtσ

(1)
t σ

(2)
t dt. It is well known that as the observation

step h tends to 0 the Realized Covariance
∑n

i=1 ∆iX
(1)∆iX

(2), where ∆iX
(m) .

= X
(m)
ti

− X
(m)
ti−1

, con-

verges to the global quadratic covariation [X(1), X(2)]T =
∫ T

0
ρtσ

(1)
t σ

(2)
t dt +

∑

0≤t≤T ∆Z
(1)
t ∆Z

(2)
t , where

∆Z
(m)
t = Z

(m)
t − Z

(m)
t− , containing also the co-jumps ∆Z

(1)
t ∆Z

(2)
t , i.e. the simultaneous jumps of X(1)

and X(2). It is also well known that the Threshold Realized Covariance

ˆIC =

n
∑

i=1

∆iX
(1)I{|∆iX(1)|≤rh}∆iX

(2)I{|∆iX(2)|≤rh},
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with e.g. rh = hu, and u ∈ (0, 1/2), is consistent to IC ([16], [9]). 1 Further, a CLT for ˆIC has been

established when the jumps processes have finite jump activity (FA), i.e. only a finite number of jumps

can occur, along each path, in each finite time interval, (see [15]) or when the jumps processes have

infinite activity (IA) but finite variation, i.e.
∑

s≤T |∆X
(m)
s | < ∞, m = 1, 2, (see [8], Thm 7.4), meaning

that the jumps activity of the processes is moderate. Namely, the estimator is asymptotically mixed

Gaussian and converges with speed
√

h. It is the unique estimator of IC proposed in the literature in

the presence of IA jumps, and it has been shown ([16]) that it is the most efficient in simple cases when

the jumps have FA. Here we investigate the speed in the case of infinite activity jumps where at least

one component has infinite variation, and we find that the rate crucially depends on the small co-jumps

and is determined not only by the jump activity of each one of the two components, but also on the

dependence degree of their small jumps. Further, differently on what we had in the univariate case ([14]),

in some cases a mixed term containing the Brownian increments and the jumps of the most active Z(m)

comes in. In the univariate case such a speed reduces to the one found in [14].

Estimation of IC is of strong interest in financial econometrics (see e.g. [3]) and in the framework of

portfolio risk and hedge funds management ([6]).

An outline of the paper is as follows. In section 2 we illustrate the framework; in section 3 we review

the known results on ˆIC when the jumps of the vector X have finite activity. In section 4 we establish the

exact convergence rate when both the Z(m) have IA and at least one has infinite variation. More precisely,

we assume that the bivariate small jumps are the small jumps of a Lévy process with stable marginal

laws and joint law characterized by a Lévy copula ranging in the class of the convex combinations of C⊥
(independence copula) and C‖ (complete dependence copula).

2 The framework

Given a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ), let X(1) = (X
(1)
t )t∈[0,T ] and X(2) = (X

(2)
t )t∈[0,T ]

be two real processes defined by (1) and X0 = (0, 0), where

A1. we take two independent Wiener processes W (1) and W (3) and construct

W
(2)
t = ρtW

(1)
t +

√

1 − ρ2
t W

(3)
t , (2)

A2. the coefficients σ(m) = (σ
(m)
t )t∈[0,T ], a(m) = (a

(m)
t )t∈[0,T ], m = 1, 2, and ρ = (ρt)t∈[0,T ]

are adapted càdlàg processes,

It turns out that J (m) are finite activity jump processes accounting for the jumps with size bigger in

absolute value than 1. They can also be represented as

J
(m)
t =

∫ t

0

γ(m)
s dN (m)

s =

N
(m)
t

∑

k=1

γ
(m)

τ
(m)
k

, m = 1, 2,

where N (m) = (N
(m)
t )t∈[0,T ] are counting processes with E[N

(m)
T ] < ∞; {τ (m)

k , k = 1, ..., N
(m)
T } denote

the instants of jump of J (m) and γ
(m)

τ
(m)
k

denote the sizes of the jumps occurred at τ
(m)
k . In this represen-

tation we intend that ∀t ∈ [0, T ], P{∆N
(m)
t 6= 0, γ

(m)
Nt

= 0} = 0, i.e. if on (ω, t) we have γ
(m)
t (ω) = 0,

1For the literature on non parametric inference for the IC of stochastic processes driven by Brownian motions plus

jumps, see [16].
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A3. for m = 1, 2

Z(m) = J (m) + M (m)

are jump processes, with

J (m) .
=

∫ ·

0

∫

{|γ(m)(s,ω,x)|>1}
γ(m)(s, ω, x)µ(m)(ω, dx, ds),M (m) .

=

∫ ·

0

∫

{|γ(m)(s,ω,x)|≤1}
γ(m)(s, ω, x)µ̃(m)(ω, dx, ds),

where, for each m = 1, 2, µ(m) is the Poisson random measure counting the jumps of Z(m),

µ̃(m)(dx, ds)
.
= µ(m)(dx, ds) − ν(m)(dx)ds is its compensated measure (see [8]).

then time t has not to be considered a jump time for path ω. On the contrary M (m) are generally infinite

activity pure jump processes. The property ν(m)(ω, R−{0}) = ∞ characterizes the fact that the path ω

of M (m) jumps infinitely many times on any finite time intervals. M (m) are compensated sums of jumps

which have size bounded in absolute value by 1. Substantially J (m) accounts for the (usually big) rare

jumps of X(m), while M (m) accounts for the very frequent and small jumps.

Remark 2.1. If Z(m) is a pure jump Lévy process, assumption A3 is satisfied, since Z(m) has the

same representation as above with x in place of γ(m)(s, ω, x) (see [6]) and J (m) are compound Poisson

processes.

We observe X(1), X(2) discretely and synchronously. Let, for each n, π
[0,T ]
n = {0 = t0,n < t1.n < · · · <

tn,n = T} be a partition of [0, T ]. We assume equally spaced subdivisions, i.e. hn := ti,n − ti−1,n = T
n

for every n = 1, 2, ..... Hence hn → 0 iff n → ∞. To simplify the notation we write h in place of hn, ti in

place of ti,n and ∆iX
(m) in place of ∆i,nX(m) .

= X
(m)
ti

− X
(m)
ti−1

.

A4. We choose a deterministic function rh of h, called threshold, satisfying

lim
h→0

rh = 0, lim
h→0

hlog 1
h

rh
= 0.

Denote, for each m = 1, 2, by

D
(m)
t =

∫ t

0

a(m)
s ds +

∫ t

0

σ(m)
s dW (m)

s ,

the Brownian semimartingale part (abbreviated with BSM) of X(m), and by

Y
(m)
t = D

(m)
t + J

(m)
t

the BSM part of X(m) plus the finite jump activity component.

3 Preliminary results

The truncated realized covariation is able to separately capture IC because it excludes from
∑n

i=1 ∆iX
(1)

∆iX
(2) those increments where jumps bigger than the threshold occurred, so when h → 0 all the jumps

are excluded. The key point to understand when an increment ∆iX
(m) is likely to contain some jumps is

the Paul Lévy law for the modulus of continuity of the Brownian motion paths (see [12]), telling us that

the increments of each D(m) tend to zero at speed
√

h ln 1
h . In fact we have (see [13])
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Remark 3.1. Under A2 we have a.s.

sup
1≤j≤n

|∆jD
(m)|

√

2hlog 1
h

≤ Km(ω) < ∞, m = 1, 2,

where Km
.
= sups∈[0,T ] |a|s + sups∈[0,T ] |σ|s + 1 are finite random variables.

In fact, if for small h we have (∆iX
(m))2 > rh >

√

2h ln 1
h then either some jumps of J (m) occurred or

some jumps of M (m) larger than 2
√

rh occurred ([13]).

Define

ˆAV ar = h1− r+l
2

n
∑

i=1

2
∏

m=1

(∆iX
(m))2I{|∆iX(m)|≤√

rh}

−h−1
n−1
∑

i=1

1
∏

j=0

∆i+jX
(1)I{|∆i+jX(1)|≤√

rh}

1
∏

j=0

∆i+jX
(2)I{|∆i+jX(2)|≤√

rh} :

this is a truncated version of an analogous statistic defined and used in [4] when estimating IC for a

continuous bivariate process X. When only finite activity jumps can occur then the speed of convergence

of ˆIC is
√

h. More precisely we have

Theorem 3.2. (CLT for ˆIC when jumps have finite activity, [16]) If M (m) ≡ 0, for m = 1, 2, then under

the assumptions A1-A4 we have, as h → 0,

NBh :=
ˆIC −

∫ T

0
ρtσ

(1)
t σ

(2)
t dt

√
h
√

ˆAV ar

st→ N ,

where N is a rv with standard Gaussian law N (0, 1) and
st→ denotes stable convergence in law.

Theorem 3.3. (Asymptotic variance, [7]) Under A1-A4 we have, as h → 0,

ˆAV ar
P→

∫ T

0

(1 + ρ2
t )(σ

(1)
t )2(σ

(2)
t )2dt.

Remarks. i) In [8] it is shown that the convergence speed to IC of a slightly different version of the

threshold estimator is still
√

h under the restriction that also σ is an Ito semimartingale (SM) but under

the more general condition that both the processes Z(m) are semimartingales with, substantially, finite

variation. More precisely, the jump sizes are assumed to be substantially bounded by a deterministic

strictly positive function γ(x) in the following way: supx∈IR
|γ(m)(ω,t,x)|

γ(x) is locally bounded, for m = 1, 2.

The condition required to ensure a CLT is that
∫

{γ≤1} γr(x)dx < ∞ for some r < 1. Under our framework

such a condition translates into requiring that both the indices αm defined below are less than one. We

therefore are interested here in studying the cases where αm ≥ 1 for at least one index.

ii) Note that [8] constructs the estimator of IC imposing a threshold condition of type (∆iX
(1))2 +

(∆iX
(2))2 ≤ φ2h2̟ with φ ∈ IR and ̟ = u, u ∈ (0, 1/2), while we separately ask for each (∆iX

(m))2

being dominated by the same rh. Since the norms ||.||1 and ||.||2 in IR2 are equivalent, asymptotically the

two choices make no difference, meaning that also our ˆIC has convergence speed
√

h when both αm < 1.

However it is possible that in finite samples one of the two choices is better than the other.
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4 Main results

We find here the speed of convergence of ˆIC − IC to 0 when both M (m) 6= 0 and at least one of them

has infinite variation. We specialize our analysis to the case where the small jumps of each X(m) are

of α-stable type, i.e. M
(m)
t = L

(m)
t − z(m)t − ∑

s≤t ∆L
(m)
s I{|∆L

(m)
s |>1}, where L(m) are αm-stable Lévy

processes with characteristic triplets (z(m), 0, ν(m)(dx)), with ν(m) given below. Further we assume that

the occurrence of the joint jumps of L(1) and L(2) is characterized by a Lévy copula C ranging in a given

class. We have αm ∈]0, 2[ for each m = 1, 2 and assume (w.l.g.) α1 ≤ α2. As said, we are interested in

the case where at least one of the two indices is greater or equal than 1, we thus assume α2 ≥ 1, and

α1 ∈ (0, α2]. Further, for simplicity, but w.l.g., we develop our proofs for the case where each L(m) is one

sided, i.e. has only jumps with positive sizes.

A5 Take α2 ≥ 1, and α1 ∈ (0, α2]. The jumps of each L(m) have Lévy density

ν(m)(dxm) = cmx−1−αm
m I{xm>0}dxm,

which has support IR+, where cm > 0.

We denote, for each m = 1, 2, by

Um(xm) := ν(m)
(

[xm, +∞[
)

= cm
x−αm

m

αm
, xm > 0 (3)

the tail integral of the marginal Lévy measure ν(m) of the jumps of L(m).

Note that αm is the Blumenthal-Getoor index of L(m), of M (m) and of X(m). We now make use of

Lévy copulas, because, due to the stationarity of the Lévy processes increments, the Lévy copulas allow

to separate the time component in the law of a bivariate pure jump Lévy process L from the jump sizes

component and allow to describe the dependence between L(1) and L(2) through only the dependence of

their jump sizes. Lévy copulas were introduced in [17], further studied in [11] and their properties are

well summarized in [6].

A6 For any t the joint jumps occurrence of
(

L
(1)
t , L

(2)
t

)

is described by the following tail

integrals

U(x1, x2) = νγ([x1, +∞) × [x2, +∞)) = Cγ(U1(x1), U2(x2))

where Cγ(u, v) is a Lévy copula of the form

Cγ(u, v) = γC⊥(u, v) + (1 − γ)C‖(u, v),

where C⊥(u, v) = uI{v=∞} + vI{u=∞} is the independence copula, C‖(u, v) = u∧ v is the total

positive dependence copula and γ ranges in [0, 1].

A6 means that, at any t, (L(1), L(2)) can only have two basically different classes of jumps:

i) the disjoint jumps, when only one of the two components jumps, meaning that Lt jumps with size

either (0, x2) or (x1, 0). This type of jumps is regulated only by C⊥;

ii) the joint jumps, when the two components L(m) jump together, meaning that L jumps with size falling

into a point (x1, x2) with both xm 6= 0. This type of jumps is regulated only by C‖.

C‖ characterizes a bivariate jump Lévy process L̄ whose marginals L̄(m) are Lévy and only make joint

5



jumps which are completely positively monotonic, i.e. there exists a strictly increasing, strictly positive

function f : ∀s > 0 ,∆L̄
(2)
s = f(∆L̄

(1)
s ). In fact the sizes (x1, x2) realized by the jumps of L̄s turn out to

be supported by the graph of f(x1) = Ū−1
2 (Ū1(x1)), which in our case of one sided α-stable marginals is

given by f(x1) =
(

c1

α1
· α2

c2

)− 1
α2

x
α1
α2
1 .

b

ep

ep0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1

x

Figure 1. Graph of f(x1), the support of the jump sizes of L̄s, at any s. Case α1 = 0.8; α2 = 1.2; c1 = 1; c2 = 2.

The 45 degrees line is jointly represented, b = f−1(ε), ep=ε.

Thus our assumption that L has Lévy measure νγ means that the jumps of L are supported on the set

given by the union of the graph of f and the positive sides of the cartesian axes. Each marginal µ(m)

counts the projection on axis xm of all the jumps of L. Such marginals have αm-stable law. However

when a jump is realized so that x2 = f(x1) then this is interpreted as a jump of the parallel component

L̄ of L. Any other type of jumps of the marginals L(m) are interpreted as being associated to a zero

complementary component, i.e. as being the projection of a disjoint jump. By changing γ we keep the

same marginals L(m) and the same joint or disjoint jumps, but we change the weight given to the different

classes of jumps by the underlying probability measure.

It turns out that L̄ has joint Lévy measure ν‖([x1,+∞)×[x2,+∞)) = I{x1 6=0,x2 6=0}ν
(1)([x1∨f−1(x2), +∞)),

so νγ within A6 is equivalently writable as

νγ([x1, +∞) × [x2,+∞)) = γI{x2=0}ν
(1)([x1,+∞)) + γI{x1=0}ν

(2)([x2, +∞))+ (4)

+(1 − γ)I{x1 6=0,x2 6=0}ν
(1)([x1 ∨ f−1(x2), +∞)).

The processes we chose to deal with are quite representative since in fact many commonly used models

in finance (Variance Gamma model, CGMY model, NIG model, etc.) have Lévy measures related to the

ones in assumption A5 in the sense that they are tempered stable processes where the order of magnitude

of the tail integrals as xm → 0 is as in (3). Moreover Cγ allows to range from a framework of independent

components to a framework where the components are completely positively monotonic.

Remark. A6 is in particular satisfied in a factor model for the jump components, where

J (1) = V (1), J (2) = aV (1) + bV (2)

with V (1), V (2) independent pure jump Lévy processes, and a, b real constants. In such a case f(x) = ax.

The speed of convergence of ˆIC−IC is strictly related to the speed of convergence to zero of the small

co-increments of the two M (m) (see [14] for the univariate case), and the small increments of each X(m)

6



substantially behave like the small jumps ([1], Lemma 5). Thus the small co-increments are strictly related

to the small co-jumps
∑

s≤T ∆X
(1)
s I|∆X

(1)
s |≤ε

∆X
(2)
s I|∆X

(2)
s |≤ε

, whose expectation is
∫

0≤x,y≤ε
xydνγ(x, y).

Note that the jumps of the bivariate processes M and L coincide in restriction to the subset of IR2 where

the jump sizes (x, y) are in (0, ε] × (0, ε], if ε < 1, thus for instance
∫

0≤x,y≤ε
xkymνγ(dx, dy) is the same

for M and L, for any integers m, k.

Remark 4.1. We need assumption A6 in order to control the speed of convergence to zero of integrals

like
∫

0≤x,y≤ε
xkymdνγ(x, y), for ε > 0 and integers k,m. Note that for the independence part C⊥ of

the copula when k,m ≥ 1 the integral above is zero, because the independent components of L have no

common jumps. It follows that under assumption A6, for both k ≥ 1 and m ≥ 1

∫

0≤x,y≤ε

xkymνγ(dx, dy) = (1 − γ)

∫

0≤x,y≤ε

xkymdC‖(U1(x), U2(y)).

Lemma 4.2. i) Given the expression of C‖ and (3), for α1 ≤ α2, 0 < c1 ≤ c2, if ε < e−
1

α1 then for any

Borel function g s.t. g

(

(

α1u
c1

)− 1
α1

,
(

α2u
c2

)− 1
α2

)

is Lebesgue-integrable we have

∫

0≤x1,x2≤ε

g(x1, x2)ν‖(dx1, dx2) =

∫ +∞

c2ε−α2

α2

g

(

(α1u

c1

)− 1
α1

,
(α2u

c2

)− 1
α2

)

du

ii) for m, k ≥ 1 note that k
α1

+ m
α2

− 1 > 0, and in particular

∫

0≤x1,x2≤ε

xk
1xm

2 ν‖(dx1, dx2) = C(k, m)εm+k
α2
α1

−α2 ,

with

C(k, m)
.
= c2

(α2c1

α1c2

)
k

α1 1

m + α2

α1
k − α2

> 0;

iii) for m, k ≥ 2, for any m = 1, 2 we have

∫

0<xm≤ε

xk
mν⊥(dx1, dx2) =

∫

0<xm≤ε

xk
mν(m)(dxm) = Cm(k)εk−αm ,

with Cm(k) = cm

k−αm
; while

∫

0≤x1,x2≤ε

xk
1ν‖(dx1, dx2) = C(k, 0)ε

α2
α1

k−α2 ,

∫

0≤x1,x2≤ε

xm
2 ν‖(dx1, dx2) = C(0,m)εm−α2 ;

iv) for m = 1, 2

Aε
m

.
=

∫

ε≤xm≤1

xmν(m)(dxm) = cAm

[

(1 − ε1−αm)Iαm 6=1 + ln
1

ε
Iαm=1

]

,

where cAm

.
= cm

1−αm
Iαm 6=1 + cmIαm=1. Note that for ε < 1, cAm(1 − ε1−αm) > 0 for any αm ∈]0, 2[.

Note that C(0,m) = c2

m−α2
= C2(m). The reason why

∫

0≤x1,x2≤ε
xk

1ν‖(dx1, dx2) depends also on α2

is that the jump sizes of the parallel component of M are connected by x2 = f(x1). If α1 ≤ α2 and

0 < c1 ≤ c2 then for sufficiently small ε we have U1(ε) ≤ U2(ε), thus ε ≥ U−1
1 (U2(ε)) = f−1(ε). It follows
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that by binding both x1 ≤ ε and x2 = f−1(x1) ≤ ε we impose that x1 ≤ f−1(ε) ∧ ε = f−1(ε), so in fact

we impose to x1 a bound depending on α2.

For m = 1, 2 define

M
′(m)
t

.
= L

(m)
t − z(m)t −

∑

s≤t

∆L(m)
s I{|∆L

(m)
s |>ε} = M

(m)
t −

∑

s≤t

∆M (m)
s I{|∆M

(m)
s |>ε}

=

∫ t

0

∫

{0<x≤ε}
xµ̃(m)(dx, ds) − t

∫

{ε<x≤1}
xν(m)(dx)

then set

ξi = ξε
i

.
= ∆iM

′(1)∆iM
′(2), ξ̃i

.
=

ξi − nE[ξ1]
√

nV ar(ξ1)
.

We know that
∑n

i=1 ξ̃i is always a tight sequence. In the next theorem we computed more explicitly the

leading terms of nE[ξ1] and
√

nV ar(ξ1).

Theorem 4.3. Assume A1-A3, A6-A6, 0 < α1 ≤ α2 < 2, α2 ≥ 1, 0 < c1 ≤ c2. Take ε = hu, any

u ∈]0, 1
2 [. Then as ε → 0 the following quotients are tight:

i) if γ ∈ (0, 1) :

∑

i ξi − T (1 − γ)C(1, 1)ε1+
α2
α1

−α2I{α1>α2u}∪{α1=α2u,α2>1} − ThcA1cA2Fγ(ε)
√

Tε1−α2/2

√

hε2−α1γC1(2)C(0, 2)I{α1≤x⋆} + ε2
α2
α1 (1 − γ)C(2, 2)I{α1≥x⋆}

(5)

where

Fγ(ε) = −ε1−α2I{α1≤α2u,α2>1} + log
1

ε
I{α1≤α2u,α2=1},

x⋆
.
=

1 + 2u −
√

−4(2α2 − 1)u2 + 4u + 1

2u
∈ (α2u, α2).

ii) If γ = 1:
∑

i ξi − ThcA1
cA2

F1(ε)√
T
√

hε2−α1/2−α2/2
√

C1(2)C2(2)
, (6)

where

F1(ε) = −ε1−α2I{α1<1<α2}+log
1

ε
I{α1<1=α2}−ε1−α2 log

1

ε
I{α1=1<α2}+log2 1

ε
I{α1=α2=1}+ε2−α1−α2I{1<α1≤α2}.

iii) If γ = 0 :

∑

i ξi − TC(1, 1)ε1+
α2
α1

−α2I{α1>α2u}∪{α1=α2u,α2>1} − ThcA1
cA2

[

− ε1−α2I{α1≤α2u,α2>1} + log 1
εI{α1≤α2u,α2=1}

]

√
Tε1−α2/2

√

h2c2
A1

C(0, 2)I{α1<α2u} + ε2
α2
α1

[

C(2, 2)I{α1>α2u} +
[

C(2, 2) − 2cA1
C(1, 2) + c2

A1
C(0, 2)

]

I{α1=α2u}
]

.

(7)

Remarks on the Theorem statement.

• The term −4(2α2 − 1)u2 + 4u + 1 within x⋆ turns out to be strictly positive for all u ∈ (0, 1
2 ) and

all α2 < 2.

• Recall that m + k α2

α1
− α2 > 0 for all m, k ≥ 1, so in (5) and (7) 1 + α2

α1
− α2 > 0.

• The numerator in each quotient is always the difference of
∑

i ξi with the leading terms of its

(tending to zero) mean. When the sets indicated at the numerator or at the denominator in i) and

iii) intersect then E[
∑

i ξi] or
√

nV ar(ξ1) have two asymptotically equivalent leading terms.
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• As for the denominator in i), the case α1 = α2 falls within the region α1 ≥ x⋆.

• Note again that, at the numerator of each quotient, if α2 > 1 then ε1−α2 → +∞, while cA2
< 0 so

that the term −Thcm1
cm2

ε1−α2I{α1≤α2u,α2>1} keeps positive (and tends to zero).

Given two (possibly random) sequences Un and Vn, we say that Un = OP (Vn) if there exists n̄: for

all n ≥ n̄ we have that for any ǫ > 0, there exists a constant η > 0 such that P (|Un| > η|Vn|) < ǫ.

When |Vn| are a.s. positive, then Un = OP (Vn) means that, for sufficiently large n, Un/Vn is a sequence

bounded in probability (i.e. tight).

Given two sequences Un, Vn of r.v.s, let us denote by Un ∼ Vn when as n → ∞ we have both

Un = OP (Vn) and Vn = OP (Un).

We now show that in all cases but one, if we take u sufficiently close to 1
2 , we have

∑

i

ξi ∼ nE[ξ1]

{

∼ T (1 − γ)C(1, 1)ε1+
α2
α1

−α2I{α1>α2u}∪{α1=α2u,α2>1} + ThcA1cA2Fγ(ε) if γ ∈ [0, 1)

ThcA1cA2F1(ε) if γ = 1.
(8)

Proposition 4.4. Assume 0 < α1 ≤ α2 < 2 and α2 ≥ 1, and take u ∈ (0, 1
2 ). As h → 0 we have√

nV ar(ξ1)

nE[ξ1]
→ 0 in the following cases:

i) for γ ∈ [0, 1): for any choice of α1, α2 and u as in the assumptions;

ii) for γ = 1 : on {α1 < 1, α2 ≥ 1} ∪ {α1 = 1 < α2} iff u ∈ ( 1
2+α2−α1

, 1
2 ); on {1 < α1 ≤ α2} iff

u ∈ ( 1
α1+α2

, 1
2 ).

We have

√
nV ar(ξ1)

nE[ξ1]
→ +∞ in the following case:

iii) for γ = 1 : on {α1 = α2 = 1}, any u ∈ (0, 1
2 ).

Remarks.

1. If α < 1 or α = 1 < α2 then α1 < α2 and requiring that u > 1/(2 + α2 − α1) is possible because

1/(2 + α2 − α1) < 1/2. On the contrary, the set {1 < α1 ≤ α2} contains the case α1 = α2 and

u > 1/(2+α2−α1) = 1/2 is not admissible. Note that condition u > 1/(2+α2−α1) implies u > 1/(α1+α2)

when α2 > α1 > 1.

2. When

√
nV ar(ξ1)

nE[ξ1]
→ 0 then the tightness of

∑n
i=1 ξ̃i implies that

∑n
i=1 ξi

nE[ξ1]

P→ 1.

Otherwise, if

√
nV ar(ξ1)

nE[ξ1]
→ ∞, the tightness of of

∑n
i=1 ξ̃i only allows us to say that ∀η > 0 ∃Kη : with

probability larger than 1−η we have |∑n
i=1 ξi−nE[ξ1]| ≤ Kη

√

nV ar(ξ1), i.e. |∑n
i=1 ξi| ≤ K̃η

√

nV ar(ξ1),

but
∑n

i=1 ξi could tend to 0 faster than
√

nV ar(ξ1). However the following CLT gives us the exact

asymptotic behavior of
∑n

i=1 ξi.

Theorem 4.5. When γ = 1 = α1 = α2, for any u ∈ (0, 1
2 ) we have

∑n
i=1 ξi − nE[ξ1]
√

nV ar(ξ1)

d→ N ,

where
d→ denotes convergence in distribution.
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Further, a CLT holds also in the case of completely dependent small jumps.

Proposition 4.6 (CLT when γ = 0, see [7], Thm 4.4). If γ = 0 then as ε → 0 (7) converges in

distribution to a standard Gaussian r.v. .

Remarks: implications of the Theorems and the Proposition.

i) The rate of convergence of
∑

i ξi is determined not only by each one of the jump activity indices

α1, α2 but also on the degree γ of dependence of the two small jumps components of Z.

ii) We have that
∑n

i=1 ξi tends to zero much faster when γ = 1 than when γ ∈ [0, 1) (we obtain that

by using Proposition 4.4 and comparing nE[ξ1] or
√

nV ar(ξ1) in (6) with nE[ξ1] in (5), while matching

all the sets of (α1, α2)), i.e. the speed at which the co-increments ξi due to the small jumps tend to zero

is much faster when M (1),M (2) are independent, in fact the sum of the co-jumps in the independent case

is zero.

iii) Comparing the rate of
∑

i ξi with
√

h, we reach that
∑

i ξi <<
√

h substantially when α1 is

sufficiently small (and still α2 ≥ 1). In other words, when α1 is sufficiently small, the co-increments

of the small jumps components are negligible wrt the Browinan components. More precisely, using

Proposition 4.4, (8) and (24) below, defined

α⋆
1

.
=

α2u

α2u − u + 1/2
∈ (2u, 1), α⋆⋆

1
.
=

1 + 2u(2 − α2)

2u
>

1

2u
> 1,

we reach (see the proof in Appendix) that:

{

if γ ∈ [0, 1):
∑

i ξi ∼ nE[ξ1] <<
√

h iff α1 < α⋆
1;

if γ = 1:
∑

i ξi <<
√

h iff α1 < α⋆⋆
1 .

(9)

In the light of Theorem 4.7 below, since α⋆
1 < 1 < α⋆⋆

1 , the above result means that when the two small

jumps components M (m) are independent, then the impact of their co-increments on the convergence

speed of ˆIC − IC is negligible, wrt the impact
√

h of the Browinan components, for a wider range of

values α1.

We now check the speed of ˆIC − IC. Recall that each α-stable process L(m) at time t can be written

as L
(m)
t = z(m)h +

∑

s≤t ∆L
(m)
s I{|∆L

(m)
s |>1} +

∫ t

0

∫

|x|≤1
xµ̃(m)(dx, ds), so that

X
(m)
t =

∫ t

0

a(m)
s ds +

∫ t

0

σ(m)dW (m)
s + J

(m)
t + M

(m)
t

=

∫ t

0

a(m)
s ds +

∫ t

0

σ(m)dW (m)
s + J

(m)
t + L

(m)
t − z(m)t −

∑

s≤t

∆L(m)
s I|∆L

(m)
s |>1

= D̃
(m)
t + J̃

(m)
t + L

(m)
t ,

where D̃
(m)
t = D

(m)
t − z(m)t, J̃

(m)
t = J

(m)
t − ∑

s≤t ∆L
(m)
s I|∆L

(m)
s |>1

and we already know from the

literature that the BSM parts D̃(m) and the FA jumps parts J̃ (m) contribute to the speed of ˆIC as
√

h.

So, in fact, we could consider the IA jumps part of X(m) as being an αm-stable process.

Theorem 4.7. If ρ 6≡ 0 and σ(m) are s.t. when h → 0,

∀s ≥ t : s − t ≤ h, then E[|σ(m)
s − σ

(m)
t |2] ≤ c(s − t), (10)

10



then, as h → 0, with ε =
√

rh = hu with

1/2 > u >

{

1
2+α2−α1

∨ 1
3−α2

2

if α1 < α2

1
3−α2

2

if α1 = α2

(11)

and Uh a sequence of r.v.s converging stably in law to a mixed Gaussian r.v., we have

ˆIC − IC ∼
√

hUh +
n

∑

i=1

ξi +
n

∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{∑
s∈]ti−1,ti]

I
{|∆M

(2)
s |>√

rh}
≥1} (12)

∼
√

h + (1 − γ)ε1+
α2
α1

−α2 + hε−α2

∼
√

h I{α2∈[1, 1
2u )}

[

I{γ=1} + I{γ∈[0,1),α1≤α⋆
1}

]

+(1 − γ)ε1+
α2
α1

−α2I{γ∈[0,1)}
[

I{α2∈[1, 1
2u ), α1>α⋆

1} + I{α2≥ 1
2u}I{α2=α1}∪{α2>α1, u<

α1
α2+α1

}

]

+hε−α2 I{α2≥ 1
2u}

[

I{γ=1} + I{γ∈[0,1)}I{α1≤α2u}∪{α2>α1>α2u, u≥ α1
α2+α1

}

]

.

(13)

Remarks on (13).

i) We did not include condition u ≥ α1

α2+α1
among the ones in (11), because such conditions are

required for the convergence of some terms of I4 (defined within the proof of the Theorem) in ˆIC − IC,

while α1

α2+α1
is only a separator to establish whether the leading term is θ2 or

∑n
i=1 ξi. There is another

proof for the convergence of some of the cited terms of I4, which avoids conditions (11), but it is much

longer than the one given in the appendix.

ii) If α1 < α2, (11) implies that u > 1/4. Also, u < α1

α2+α1
implies α2u < α1.

iii) As for
∑n

i=1 ξi, also the convergence rate of ˆIC − IC not only depends, as in the univariate case,

on the jump activity indices, but, surprisingly, also on the dependence structure of the small jumps.

This implies that ˆIC contains information that we could exploit to estimate the dependence degree among

the small jumps of two processes.

Note that when the dependence degree increases (γ decreases) then the leading term of
∑n

i=1 ξi also

increases (
∑

i E[ξi] increases and
√

nV ar(ξ1) <
∑

i E[ξi]), and the estimation error ˆIC − IC increases.

An higher leading term of
∑

i ξi means that the average weight of the small jumps is higher so that the

disturbing noise when estimating the Brownian feature IC is higher. That is: the higher the dependence

degree, the higher the disturbing noise.

iv) Basically, when u is very close to 1/2 (u ≥ α1

α2+α1
), the rate is

√
h when α1, α2 are small (note that

when α2 < 1/(2u) then α1 < α⋆⋆
1 ); it is ε1+

α2
α1

−α2 when the jumps are dependent and either the indices

have intermediate values within (α⋆
1, 1/(2u)) or they coincide and assume the largest possible values; the

rate is hε−α2 when α2 is large and the indices are different if γ ∈ [0, 1), any the indices are if γ = 1.

v) When the leading term is
∑n

i=1 ξi the speed
√

nV ar(ξ1) =
√

hε2−α1/2−α2/2 never appears, because

in the cases where the asymptotic behavior of
∑n

i=1 ξi is
√

nV ar(ξ1) (e.g. the case γ = α1 = α2 = 1;

the case γ = 1 and 1 < α1 ≤ α2 < 1/(2u), where we have u < 1/(2α2) ≤ 1/(α1 + α2)) it holds that
√

nV ar(ξ1)/
√

h → 0, so
∑n

i=1 ξi is dominated by
√

h.

vi) For γ = 0 or γ ∈ (0, 1) we have the same cases: in the presence of the parallel component, the

independent component does not modify the rate of convergence. More precisely, recalling that ε = hu,

with u < 1/2 but u close to 1/2 (i.e. verifying conditions (11) and u ≥ α1/(α1 + α2)) and noting that
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α⋆
1 < 1 ≤ 1/(2u), we have the following rates when γ ∈ [0, 1):

√
h if α1 ≤ α⋆

1 < 1 ≤ α2 < 1
2u

ε1+
α2
α1

−α2 if α⋆
1 < α1 ≤ α2 < 1

2u

ε1+
α2
α1

−α2 if α1 = α2 ≥ 1
2u

hε−α2 if α1 6= α2, α2 ≥ 1
2u .

On the contrary, in the presence of the independent component, the parallel component does worsen the

rate of convergence. In fact, for γ = 1 (complete independence of the small jumps) we have the following

rates: √
h if α2 < 1

2u ,

hε−α2 if α2 ≥ 1
2u .

vii) The rate is
√

h even in some cases with α2 > 1 (but α2 < 1/(2u)): any α1 is, if γ = 1; for α1

sufficiently small (α1 ≤ α⋆
1) if the parallel component is present.

viii) When α1 = α2
.
= α ≥ 1 the jump activity indices α1 and α2 coincide but the two jump

components are not necessarily completely monotonic and we reach the following speeds of convergence

to zero of ˆIC − IC:

if γ ∈ [0, 1) rate (1 − γ)ε2−α

if γ = 1 rate
√

h if α < 1
2u (note that α < α⋆

1 < 1 is not in our ossumptions)

if γ = 1 rate hε−α2 if α ≥ 1
2u .

ix) The univariate case is when α1 = α2 and γ = 0. In that case the rate is ε2−α = r
1−α/2
h , for any

α ≥ 1, consistently with [14], for the component of the error ˆIV − IV , in the estimation of the Integrated

Variance, due to the infinite activity infinite variation jump part.

x) The convergence speed is a function s(γ, α1, α2, u) of our parameters. Such a function is smooth

most of the times, however it has some singularities. In fact when u ≥ α1/(α1 + α2) and γ ∈ [0, 1) : if

α1 6= α2 but the two indices are close and above 1/(2u), then s = hε−α2 = h1−α2u while at α1 = α2 the

function s jumps to ε2−α2 = h2u−α2u. The jump would disappear if it was u = 1/2.

On the contrary we have smoothness at α1 = α⋆
1 if α2 < 1/(2u): in fact if α1 << α2 (case α1 ≤ α⋆

1 <

1 ≤ α2 < 1
2u ) then s = h1/2; for α1 at α⋆

1 we have s =
√

h = ε1+
α2
α1

−α2 , and with α1 ∈ (α⋆
1, α2] still is

s = ε1+
α2
α1

−α2 .

When γ = 1 we have smoothness at α2 = 1/(2u): in fact when α2 = 1/(2u) we have
√

h = hε−α2 .

Remark. When α2 < 1/(2u) and either γ = 1 or γ ∈ [0, 1), α1 < α⋆
1, we have a CLT for ˆIC − IC.

Note in fact that
√

h only comes from the BSM parts Y (m) of the processes X(m) : when α2 < 1/(2u)

and either γ = 1 or γ ∈ [0, 1), α1 < α⋆
1,

√
h is the only leading term of ˆIC − IC and the presence

of M (1) and M (2) is not influential. Further we know that, even in the presence of M (1) and M (2),
ˆAV ar

P→
∫ T

0
(1 + ρ2

t )(σ
(1)
t )2(σ

(2)
t )2dt, for all α1, α2 ∈ (0, 2) (Theorem 3.3), thus by Theorem 3.2 we have

ˆIC − IC
√

h
√

ˆAV ar

st→ N .

Aknowledgements. I thank Peter Tankov and Jean Jacod for their very important consulting.
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5 Appendix

Note that by using a localization procedure similar to the one in [8] (sec. 3.6.3) we can assume wlg that

the coefficients a(m), σ(m), ρ expressing the dynamics of X are bounded. In particular in Remark 3.1 we

can take K a constant (in fact, in [13] it is shown that K(ω) ≤ sups∈[0,T ] |a| + sups∈[0,T ] |σ| + 1).

In the following denote, for m = 1, 2,

Ñ
(m)
t =

∑

s≤t

I{|∆X
(m)
s |>√

rh}, Ṽ
(m)
t =

∑

s≤t

I{|∆M
(m)
s |>√

rh}, θm = hr
−αm

2

h .

c and K are mute names for any positive constants: they keep the same name passing from one side to

the other of an inequality/equality even when the constant changes.

Remark 5.1.

1. (Lemma A.3 part (1) in [16]) Under the assumptions A1, A2 and A5 we have, a.s., for small h,

I{(∆jD(m))2>rh} = 0, uniformly in j;

2. (Lemma A.4 in [16]) Let us consider the sequence ˆIC
(n)

, n ∈ IN. As long as M (m) is a semimartin-

gale, we can find a subsequence nk for which a.s., for any δ > 0, for large k, for all j = 1..nk, on

{(∆iM
(m))2 ≤ 4r(hk)} we have that

(∆M
(m)
2,s )2 ≤ δ + 4r(hk), ∀s ∈]ti−1, ti].

3. (Lemma 2 in [2]) If L̃ is a symmetric stable process with ˜̃Nt =
∑

s≤t ∆I{|∆L̃s|>ε} and Lévy density

F (dx) = c
|x|1+α dx, if θ̃ = hε−α, then:

P







∣

∣

∣

∣

∣

∣

∆iL̃ −
∑

s∈]ti−1,ti]

∆L̃sI{|∆L̃s|>ε}

∣

∣

∣

∣

∣

∣

> ε







≤ Kθ̃4/3;

P{|∆iL̃| > ε, ∆i
˜̃N = 0} ≤ Kθ̃4/3;

P{|∆iL̃| ≤ ε, ∆i
˜̃N = 1} ≤ Kθ̃4/3.

4. (Lemma 6 in [2]) For any semimartingale X with the same form as one of the components in (1)

we have

P (|∆iX| > cε) ≤ Kθ̃m.

5. ([6], ch.3, Prop. 3.7) For any Lévy process V with Lévy measure ν, then
∑

s≤t I{|∆Vs|>ε} is a

Poisson process with parameter tν{|x| > ε} = tU(ε), where U(x) gives the tail of the jumps sizes

measure;

it follows that if ν(dx) = a|x|−1−αIx<0 + bx−1−αIx>0 with a, b > 0, then with p ∈ (0, 1),

P{
∑

s∈]ti−1,ti]

I{|∆Vs|>ε} = 1} ∼ Kθ̃,

P{
∑

s∈]ti−1,ti]

I{|∆Vs|>ε} ≥ 2} ∼ Kθ̃2,

P{
∑

s∈]ti−1,ti]

I{|∆Vs|∈(ε(1−p),ε]} = 1} ≤ Kθ̃((1 − p)−α − 1).
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Only last point needs to be commented: we have

P{
∑

s∈]ti−1,ti]

I{|∆Vs|∈(ε(1−p),ε]} = 1} = P (µ{]ti−1, ti] × (ε(1 − p), ε)} = 1) = e−λhλh,

where λ = ν{(ε(1 − p), ε)} = U(ε(1 − p)) − U(ε), thus the above display

∼ Kh(U(ε(1 − p)) − U(ε)) ≤ Khε−α((1 − p)−α − 1).

Since for small p we have (1 − p)−α ∼ (1 + αp), the thesis follows.

Let us recall that in our framework the small jumps parts M (m) are the small jumps of one-sided

stable processes L(m).

Lemma 5.2.

1. For each m = 1, 2 for any i = 1..n, we have

P{∆iN
(m) 6= 0, (∆iM

(m))2 > rh} ≤ K
h2

rh
.

2. If L is a one-sided α-stable process with characteristic triplet (z, 0, c · I{x>0}x
1−αdx), if we take an

ε = ε(h) s.t. ε(h)/h → 0 then, for any constant p ∈ (0, 1) s.t. p > |z|ε/h then ∀ q ∈ (0, 1 − p) we

have

P{|∆iL| > ε,
∑

s∈]ti−1,ti]

I{|∆Ls|>ε} = 0} ≤ Kθ̃4/3 + Kθ̃(q−α − 1).

3. For any p, q as above we have

P{|∆iM
(m)| >

√
rh(1 − p),∆iṼ

(m) = 0} ≤ Kθ4/3
m + Kθm(q−α − 1).

4. Let H1
.
= (Lt − zt)t, and take p as above, then

P{|∆iH1| ≤ ε(1 + p),
∑

s∈]ti−1,ti]

I{|∆H1s|>ε} = 1} ≤ Kθ̃4/3
m + Kθ̃(1 − (1 + 2p)−α)

5. We have

P{|∆iL| ≤ ε,
∑

s∈]ti−1,ti]

I{|∆Ls|>ε} = 1} ≤ Kθ̃4/3
m + Kθ̃(1 − (1 + 2p)−α)

6. For any fixed p ∈ (0, 1) s.t. p > |z|√rh/h we have

P{|∆iM
(m)| ≤ √

rh(1 + p), ∆iṼ
(m) ≥ 1} ≤ Kθ4/3

m + Kθm(1 − (1 + 2p)−α).

7. P (|∆iM
(m)| > c

√
rh) ≤ Kθm

Proof As for point 1, since N and M are independent, using also the Markov inequality we trivially

have P{∆iN
(m) 6= 0, (∆iM

(m))2 > rh} = P{∆iN
(m) ≥ 1}P{(∆iM

(m))2 > rh} ≤ KhE[(∆iM
(m))2]

rh
=

Kh
h

∫ 1
0

x2ν(m)(dx)

rh
= K h2

rh
.

Point 2: the idea here is to look at H1
.
=

(

Lt − zt
)

t
as half of a symmetric stable process. More

precisely, take an independent and identically distributed copy H2 of H1, then L̃ = H1−H2 is a symmetric

α-stable process because its Lévy measure is c · |x|−1−αdx, so Remark 5.1, point 3, holds true for L̃. Let

us now fix any p ∈ (0, 1) s.t. |z|h/ε < p and call L̃′, and H ′
ℓ the processes L̃, Hℓ deprived of their
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jumps bigger than ε, e.g. H ′
ℓt = Hℓt −

∑

s≤t ∆H1sI{|∆H1s|>ε}. Note that if |∆iL| > ε then we have

|∆iH1| = |∆iL − zh| > |∆iL| − |z|h > ε − |z|h > ε(1 − p), and also that the jumps of L and H1 are the

same and are positive, thus

P







|∆iL| > ε,
∑

s∈]ti−1,ti]

I{∆Ls>ε} = 0







≤ P







|∆iH1| > ε(1 − p),
∑

s∈]ti−1,ti]

I{∆H1s>ε} = 0







[i salti di L ed H1 sono gli stessi]

= P







|∆iH
′
1| > ε(1 − p),

∑

s∈]ti−1,ti]

I{∆H1s>ε} = 0







≤ P{|∆iH
′
1| > ε(1 − p)} (14)

= P{|∆iH
′
1| > ε(1 − p), ∆iH

′
2 ≤ ε(1 − p − q)} + P{|∆iH

′
1| > ε(1 − p),∆iH

′
2 > ε(1 − p − q)}.

Now within the first set of the last display we have |∆iL̃
′| = |∆iH

′
1 − ∆iH

′
2| > |∆iH

′
1| − |∆iH

′
2| >

ε(1− p)− ε(1− p− q) = εq, while the probability of the second set, by the independence of the processes

H ′
ℓ, is P{|∆iH

′
1| > ε(1 − p)}P{|∆iH

′
2| > ε(1 − p − q)} which is dominated by Kθ̃2 by Lemma 5.1, point

4, taking a ≡ σ ≡ J ≡ 0, and Mt =
∫ t

0

∫ ε

0
xν̃(dx) − t

∫ 1

ε
xν(dx). H1 6= M , ma H ′

ℓ sarebbe M ′ del teo 4.3

It follows that (14) is dominated by

P{|∆iL̃
′| > εq} + Kθ̃2 : (15)

note that

P{|∆iL̃
′| > εq} = P

{

|∆iL̃
′| > εq, ∆i

˜̃N = 0
}

+ P
{

|∆iL̃
′| > εq, ∆i

˜̃N ≥ 1
}

:

by the independence of ∆iL̃
′ on ∆i

˜̃N and using Remark 5.1, point 3, we have

P
{

|∆iL̃
′| > εq, ∆i

˜̃N ≥ 1
}

= P{|∆iL̃
′| > εq}P

{

∆i
˜̃N ≥ 1

}

≤ Kθ̃4/3θ̃.

Therefore (15) is dominated by

Kθ̃7/3 + P{|∆iL̃
′| > εq, ∆i

˜̃N = 0} + Kθ̃2;

[ci sono solo salti ≤ ε < − > i salti ≤ εp + i salti con sizes ∈ (εp, ε]] noting that θ̃7/3 << θ̃2, the last

display is dominated by

P







|∆iL̃
′| > εq,

∑

s∈]ti−1,ti]

I{∆L̃s>εq} = 0







+ P







∑

s∈]ti−1,ti]

I{∆L̃s∈(εq,ε]} ≥ 1







+ Kθ̃2 : (16)

using Remark 5.1 point 5, we have

P







∑

s∈]ti−1,ti]

I{∆L̃s∈(εq,ε]} ≥ 1







∼ θ̃(q−α − 1), (17)

using also Remark 5.1, point 3, with εq in place of ε, and the fact that θ̃2 << θ̃4/3, (16) is dominated by

Kθ̃4/3 + Kθ̃(q−α − 1),

which is our thesis.

Point 3 is a consequence of point 2. Let us denote L(m) with L. We are going to compare {∑s∈]ti−1,ti]
I{∆H1s>

√
rh} =

0} and {∆iṼ
(m) = 0}. Note that since Mt = Lt − zt − ∑

s≤t ∆LsI{∆Ls>1}, the jumps of M are the
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ones less than 1 of L. The set {∆iṼ
(m) = 0} is where, among the jumps less than 1 of L, only those

less than
√

rh arrived; however some jumps of L bigger than 1 could be happened. On the contrary on

{∑s∈]ti−1,ti]
I{∆H1s>

√
rh} = 0} = {∑s∈]ti−1,ti]

I{∆Ls>
√

rh} = 0} no jumps of L bigger than
√

rh arrived,

thus not even the jumps bigger than 1. It follows that, with ε =
√

rh,

P{|∆iM
(m)| >

√
rh(1 − p),∆iṼ

(m) = 0} = P{|∆iM
(m)| >

√
rh(1 − p), ∆iṼ

(m) = 0,
∑

s∈]ti−1,ti]

I{∆Ls>1} = 0}

+P{|∆iM
(m)| >

√
rh(1 − p), ∆iṼ

(m) = 0,
∑

s∈]ti−1,ti]

I{∆Ls>1} ≥ 1}

≤ P{|∆iH
′
1| >

√
rh(1 − p),

∑

s∈]ti−1,ti]

I{∆H1s>
√

rh} = 0} + P{
∑

s∈]ti−1,ti]

I{∆Ls>1} ≥ 1}

the first term is the one in (14) while the second one involves the Poisson process, counting the jumps of

L bigger than 1 within ]ti−1, ti], which has parameter hU(1), thus the display above is dominated by

Kθ4/3 + Kθ(q−α − 1) + Kh ≤ Kθ4/3 + Kθ(q−α − 1).

Point 4. With the same notations as at Point 2, we have

P{|∆iH1| ≤ ε(1+p),
∑

s∈]ti−1,ti]

I{|∆H1s|>ε} = 1} = P{|∆iH1| ≤ ε(1+p),
∑

s∈]ti−1,ti]

I{|∆H1s|>ε} = 1, |∆iH2| > εp}

+P{|∆iH1| ≤ ε(1 + p),
∑

s∈]ti−1,ti]

I{|∆H1s|>ε} = 1, |∆iH2| ≤ εp} : (18)

the first term of the rhs is dominated by P{∑s∈]ti−1,ti]
I{|∆H1s|>ε} = 1, |∆iH2| > εp}, which by the

independence between the processes Hℓ coincides with P{∑s∈]ti−1,ti]
I{|∆H1s|>ε} = 1}P{|∆iH2| > εp}

which is in turn dominated by Kθ̃2 by Remark 5.1 points 4 and 5. As for the second term, on {|∆iH1| ≤
ε(1 + p), |∆iH2| ≤ εp} we have |∆iL̃| = |∆iH1 − ∆iH2| ≤ |∆iH1| + |∆iH2| ≤ ε(1 + p) + εp = ε(1 + 2p).

Moreover the independence between the processes Hℓ implies that they have no contemporary jumps,

thus if at time s the process H1 makes 1 jump larger than ε, then also L̃ does. In particular, if H1 makes

only 1 jump larger than ε within the time interval ]ti−1, ti], then: if H2 doesn’t do then L̃ only has 1

jump larger than ε within ]ti−1, ti], while if H2 does then L̃ has more than 1 jump larger than ε within

]ti−1, ti]. That means that
∑

s∈]ti−1,ti]
I{|∆H1s|>ε} = 1 ⇒ ∑

s∈]ti−1,ti]
I{|∆L̃s|>ε} ≥ 1. However we know

that P{∑s∈]ti−1,ti]
I{|∆L̃s|>ε} ≥ 2} ≤ Kθ̃2, it follows that (18) is dominated by

Kθ̃2 + P{|∆iL̃| ≤ ε(1 + 2p),
∑

s∈]ti−1,ti]

I{|∆L̃s|>ε} = 1}

≤ Kθ̃2 + P{|∆iL̃| ≤ ε(1 + 2p),
∑

s∈]ti−1,ti]

I{|∆L̃s|>ε(1+2p)} = 1} + P{
∑

s∈]ti−1,ti]

I{|∆L̃s|∈(ε,ε(1+2p)} = 1} :

by Remark 5.1 point 5, the last term is dominated by Kh[U(ε) − U(ε(1 + 2p))] = Hθ̃(1 − (1 + 2p)−α);

using also point 3, with ε(1 + 2p) in place of ε, and the fact that θ̃2 << θ̃4/3 the thesis follows.

Point 5 follows from point 4. In fact if |∆iL| ≤ ε then |∆iH1| = |∆iL− zh| ≤ |∆iL|+ |z|h < ε(1+ p),

further the jumps of L are exactly the ones of H1, thus

P{|∆iL| ≤ ε,
∑

s∈]ti−1,ti]

I{|Ls|>ε} = 1} ≤ P{|∆iH1| ≤ ε(1 + p),
∑

s∈]ti−1,ti]

I{|H1s|>ε} = 1}.
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Point 6 also follows from point 4. Let us denote L(m) with L. We have

P{|∆iM
(m)| ≤ √

rh(1 + p), ∆iṼ
(m) ≥ 1} = (19)

P{|∆iM
(m)| ≤ √

rh(1 + p), ∆iṼ
(m) ≥ 1,

∑

s∈]ti−1,ti]

I{|∆Ls|>1} = 0}+

P{|∆iM
(m)| ≤ √

rh(1 + p),∆iṼ
(m) ≥ 1,

∑

s∈]ti−1,ti]

I{|∆Ls|>1} ≥ 1} :

the second term of the rhs is bounded by Kh, as at Point 3, thus (19) is dominated by

P{|∆iM
(m)| ≤ √

rh(1 + p),∆iṼ
(m) ≥ 1,

∑

s∈]ti−1,ti]

I{|∆Ls|>1} = 0} + Kh.

Now, if L does not make jumps bigger than 1, then the jumps of M coincide with the jumps of L, which

in turn are the same as for H1; further the very M coincides with H1. Thus the probability of the last

display coincides with

P{|∆iH1| ≤
√

rh(1 + p),
∑

s∈]ti−1,ti]

I{|∆H1s|>ε} ≥ 1,
∑

s∈]ti−1,ti]

I{|∆Ls|>1} = 0} + Kh ≤

P{|∆iH1| ≤
√

rh(1 + p),
∑

s∈]ti−1,ti]

I{|∆H1s|>ε} = 1} + P{
∑

s∈]ti−1,ti]

I{|∆H1s|>ε} ≥ 2} + Kh

≤ Kθ4/3
m + Kθm(1 − (1 + 2p)−α) + Kθ2

m ≤ Kθ4/3
m + Kθm(1 − (1 + 2p)−α).

Finally, point 7 is a trivial consequence of Remark 5.1, point 4, as M (m) is a semimartingale following

the same mode as component X(m) in 1 with a ≡ σ ≡ J (m) ≡ 0.

Proof of Theorem 4.3. Define

Xε
m

.
=

∫ h

0

∫

|x|≤ε

xµ̃(m)(dx, dt)

and recall that Aε
m =

∫ 1

ε
xν(m)(dx) = cAm

[

(1 − ε1−αm)Iαm 6=1 + ln 1
εIαm=1

]

, so that each ξi, i = 1..n,

has the same law as (Xε
1 − hAε

1)(X
ε
2 − hAε

2). For simplicity we write Am in place of Aε
1. We are going to

compute E[
∑n

i=1 ξi] and V ar[
∑n

i=1 ξi] so that we are sure that the centered and normalized ξi given by

ξ̃i
.
=

ξi − E[ξi]
√

nV ar(ξi)

are such that
∑n

i=1 ξ̃i keeps tight. We thus need to compute the moments E[(Xε
1)k(Xε

2)m], with k =

2, 1, 0,m = 2, 1, 0. The bivariate process Xε = (Xε
1 , Xε

2) is Lévy with Lévy measure νε(dx1, dx2) =

I{0≤x1,x2≤ε}νγ(dx1, dx2), and note that, for small ε, if 0 ≤ x1, x2 ≤ ε then also is x2
1 +x2

2 ≤ 1, so we reach

the desired moments by differentiating the characteristic function

ϕ(u1, u2) = E[eiu1Xε
1+iu2Xε

2 ] = exp{h
∫

(eiu1x1+iu2x2 − 1 − iu1x1 − iu2x2) νε(dx1, dx2)},

then evaluating at (0,0), recalling the expression of νγ and using lemma 4.2. In particular we have:

E
[

Xε
1

]

= E
[

Xε
2

]

= 0

E
[(

Xε
1

)2]

= h

∫

IR2

x2
1νε(dx1, dx2) = γC1(2)hε2−α1 + (1 − γ)C(2, 0)hε2

α2
α1

−α2 .
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Note that if γ ∈ (0, 1) then as ε → 0 we have

E
[(

Xε
1

)2]

= γC1(2)hε2−α1 + (1 − γ)C(2, 0)hε2
α2
α1

−α2 ∼ hε2−α1A,

where A = γC1(2)I{α1≤α2} + (1 − γ)C(2, 0)I{α1=α2}. In fact, with φ
.
= α2

α1
∈ [1, +∞), the quotient

ε2
α2
α1

−α2/ε2−α1 = ε2φ−α1φ−2+α1 = ε(2−α1)(φ−1)

has an exponent which is non-negative for all α1, α2 ∈ (0, 2), and zero for α1 = α2.

E
[(

Xε
2

)2]

= h

∫

IR2

x2
2νε(dx1, dx2) = hC(0, 2)ε2−α2

E
[

Xε
1Xε

2

]

= h

∫

IR2

x1x2νε(dx1, dx2) = hε1+
α2
α1

−α2C(1, 1)(1 − γ)

E
[

(Xε
1)2Xε

2

]

= h

∫

IR2

x2
1x2νε(dx1, dx2) = hε1+2

α2
α1

−α2C(2, 1)(1 − γ)

E
[

Xε
1(Xε

2)2
]

= h

∫

IR2

x1x
2
2νε(dx1, dx2) = hε2+

α2
α1

−α2C(1, 2)(1 − γ)

E
[

(Xε
1)2(Xε

2)2
]

= 2E2
[

Xε
1Xε

2

]

+ h

∫

IR2

x2
1x

2
2νε(dx1, dx2) + h2

∫

IR2

x2
1νε(dx1, dx2)

∫

IR2

x2
2νε(dx1, dx2)

∼ (1 − γ)hε2+2
α2
α1

−α2C(2, 2) + hC(0, 2)ε2−α2E
[(

Xε
1

)2]

Let us first concentrate on E[
∑

i ξi]. From the above we reach that

E[ξi] = E[Xε
1Xε

2 ] + h2A1A2

= (1 − γ)C(1, 1)hε1+
α2
α1

−α2 + cA1
cA2

h2
[

(1 − ε1−α1)(1 − ε1−α2)Iα1,α2 6=1+

ln 1
ε (1 − ε1−α2)Iα1=1<α2 + (1 − ε1−α1) log 1

εI{α1<α2=1} + ln2 1
εIα1=α2=1

]

.
(20)

Note that since ε = hu, as h → 0 we have

E[ξi] → 0.

i) and iii). If γ ∈ [0, 1), then the following terms in the expression of E[ξi] are negligible when h → 0:

when both αm = 1, for sufficiently small h we have hε1+
α2
α1

−α2 >> h2 ln2 1
ε so the leading term is

hε1+
α2
α1

−α2 , coming from E[Xε
1Xε

2 ];

when α1 = 1 < α2, then the leading term is still hε1+
α2
α1

−α2 ;

when α1 < α2 = 1, the leading term is hε1+
α2
α1

−α2 when u < α1, while is h2(1 − ε1−α1) log 1
ε ∼ h2 log 1

ε ,

coming from h2A1A2, otherwise;

when both αm 6= 1 then under our framework we necessarily have α2 > 1. Note that α2u < 1. If α1 > 1

then the leading term turns out to be hε1+
α2
α1

−α2 . If α1 < 1 : hε1+
α2
α1

−α2 is the only leading term only if

α2u < α1; when α2u = α1 (and still α2 > 1) then hε1+
α2
α1

−α2 ∼ h2(1 − ε1−α1)(1 − ε1−α2) ∼ −h2ε1−α2 ;

when α2u > α1 then the leading term is −h2ε1−α2 . Thus

E[ξi] ∼ (1 − γ)C(1, 1)hε1+
α2
α1

−α2I{α1=α2=1}∪{α1=1<α2}∪{u<α1<α2=1}∪{α1 6=1,α2>1,α2u≤α1}

+cA1cA2h
2 log

1

ε
I{α1≤u<α2=1} − cA1cA2h

2ε1−α2I{α1≤α2u<1<α2}.

18



However {α1 = α2 = 1}∪{α1 = 1 < α2}∪{u < α1 < α2 = 1}∪{α1 6= 1, α2 > 1, α2u < α1} = {α1 > α2u}
and here is where the only leading term is the factor hε1+

α2
α1

−α2 within E
[

Xε
1Xε

2

]

;

{α1 < u < 1 = α2} ∪ {α1 < α2u < 1 < α2} = {α1 < α2u} and here the only leading term is

h2A1A2 ∼
{

h2ε1−α2 if α2 > 1

h2 log 1
ε if α2 = 1;

{α1 = u, α2 = 1} ∪ {α1 = α2u < 1 < α2} = {α1 = α2u} and here: if α2 > 1 then E
[

Xε
1Xε

2

]

and h2A1A2

have the same speed hε1+
α2
α1

−α2 ; if α2 = 1 then only h2A1A2 ∼ h2 log 1
ε is leading. Thus

E[
∑

i

ξi] ∼ T (1 − γ)C(1, 1)ε1+
α2
α1

−α2I{α1>α2u}∪{α1=α2u,α2>1}+ (21)

Thcm1
cA2

[

− ε1−α2I{α1≤α2u,α2>1} + log
1

ε
I{α1≤α2u,α2=1}

]

.

ii) If γ = 1, then nE[ξ1] = nh2A1A2, and again the leading term is different for different choices of

α1, α2. We have

nE[ξ1] = Thcm1
cA2

[

− ε1−α2I{α1<1<α2} + log
1

ε
I{α1<1=α2} + log

1

ε
I{α1=1<α2} + log2 1

ε
I{α1=α2=1}+ (22)

ε2−α1−α2I{1<α1≤α2}
]

.

As for V ar(ξi), let us come back to the general case γ ∈ [0, 1]. Writing Xm for Xε
m, we have

V ar(ξi) = E[X2
1X2

2 ] − 2hA2E[X2
1X2] − 2hA1E[X1X

2
2 ]

+h2A2
2E[X2

1 ] + h2A2
1E[X2

2 ] + 2h2A1A2E[X1X2] − E2[X1X2]

= h2
∫

0≤x1,x2≤ε
x2

1dν
∫

0≤x1,x2≤ε
x2

2dν + E2[X1X2] + h
∫

0≤x1,x2≤ε
x2

1x
2
2dν+

−2hA2E[X2
1X2] − 2hA1E[X1X

2
2 ] + h2A2

2E[X2
1 ] + h2A2

1E[X2
2 ] + 2h2A1A2E[X1X2]

.
=

∑8
ℓ=1 Vℓ.

(23)

where

V1 = h2
∫

0≤x1,x2≤ε
x2

1dν
∫

0≤x1,x2≤ε
x2

2dν; V2
.
= E2[X1X2]; V3

.
= h

∫

0≤x1,x2≤ε
x2

1x
2
2dν;

V4
.
= −2hA2E[X2

1X2]; V5
.
= −2hA1E[X1X

2
2 ]; V6

.
= h2A2

2E[X2
1 ]; V7

.
= h2A2

1E[X2
2 ]; V8

.
= 2h2A1A2E[X1X2].

As ε → 0 all these terms tend to zero: we now establish which terms are leading ones and we only keep

them.

i) If γ ∈ (0, 1), we have the following properties. Firstly,

V1 = h2

∫

0≤x1,x2≤ε

x2
1dν

∫

0≤x1,x2≤ε

x2
2dν ∼ h2ε4−α1−α2AC(0, 2),

V6 = h2A2
2E[X2

1 ] ∼ h3c2
A2

[(1 − ε1−α2)2Iα2 6=1 + ln2 1

ε
Iα2=1]Aε2−α1

However, the displayed leading part of V6 is negligible wrt the displayed leading part of V1.

Secondly,

V2 = E2[X1X2] = (1 − γ)2C2(1, 1)h2ε2(
α2
α1

+1−α2),
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and

V4 = −2hA2E[X2
1X2] = −2(1 − γ)h2cA2 [(1 − ε1−α2)Iα2 6=1 + ln

1

ε
Iα2=1]C(2, 1)ε2

α2
α1

+1−α2

are negligible wrt

V3 = h

∫

0≤x1,x2≤ε

x2
1x

2
2dν = (1 − γ)C(2, 2)hε2

α2
α1

+2−α2 .

Thirdly, recalling that we chose α1 ≤ α2 and we only are interested in the case where at least α2 ≥ 1,

then we have that

V8 = 2h2A1A2E[X1X2] = 2(1 − γ)C(1, 1)cA1cA2h
3ε

α2
α1

+1−α2

·
[

(1− ε1−α1)(1− ε1−α2)Iα1,α2 6=1 +(1− ε1−α2) ln
1

ε
Iα1=1<α2

+(1− ε1−α1) ln
1

ε
Iα1<1=α2

+ ln2 1

ε
Iα1=α2=1

]

is negligible wrt

V5 = −2hA1E[X1X
2
2 ] = −2h2cA1

[(1 − ε1−α1)Iα1 6=1 + ln
1

ε
Iα1=1](1 − γ)C(1, 2)ε

α2
α1

+2−α2 .

Note that since the terms V2 and V8 are both negligible, contrarily to what we did for the mean E[ξi], here

we do not need to distinguish which is the leading term within V2+V8 = E[X1X2]
(

E[X1X2]+2h2A1A2

)

.

Finally

V7 = h2A2
1E[X2

2 ] = h3c2
A1

[(1 − ε1−α1)2Iα1 6=1 + ln2 1

ε
Iα1=1]C(0, 2)ε2−α2

is negligible wrt V1, so we are left with

V ar(ξj) = V1 + V3 + V5 ∼ h2AC(0, 2)ε4−α1−α2 + (1 − γ)C(2, 2)hε2
α2
α1

+2−α2

−2h2cA1
[(1 − ε1−α1)Iα1 6=1 + ln

1

ε
Iα1=1](1 − γ)C(1, 2)ε

α2
α1

+2−α2 .

Now, as h → 0, we have:

V1/V5 →











0 if α2 = α1 = 1

c if α2 = α1 > 1

∞ on {α1 < 1 ≤ α2} ∪ {α1 = 1 < α2} ∪ {1 < α1 < α2}

V3/V5 →











0 if α1 < α2u

c if α1 = α2u

∞ if α1 > α2u

V1/V3 →











0 if α1 ∈ (x⋆, 2)

c if α1 = x⋆

∞ if α1 ∈ (0, x⋆)

By considering the different regions α1 < α2;α1 = α2u; α1 ∈ (α2u, x⋆);α1 = 55; α1 ∈ (x⋆, 2); we find that

V5 is never the leading term in V1 + V3 + V5, V1 is the only leading term for α1 ∈ (0, x⋆); V1 ∼ V3 are

leading for α1 = x⋆; and V3 is the only leading term for α1 ∈ (x⋆, 2). Thus

V ar(ξi) ∼ V1I{α1≤x⋆} + V3I{α1≥x⋆} = h2AC(0, 2)ε4−α1−α2I{α1≤x⋆} + h(1 − γ)C(2, 2)ε2+2
α2
α1

−α2I{α1≥x⋆}

however if α1 ≤ x⋆ then necessarily α1 < α2 so A becomes γC1(2) and

V ar(ξi) ∼ h2γC1(2)C(0, 2)ε4−α1−α2I{α1≤x⋆} + h(1 − γ)C(2, 2)ε2+2
α2
α1

−α2I{α1≥x⋆}
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= hε2−α2
[

hε2−α1γC1(2)C(0, 2)I{α1≤x⋆} + ε2
α2
α1 (1 − γ)C(2, 2)I{α1≥x⋆}

]

so that, recalling (21), the sum of the centered and normalized terms ξ̃i has the same asymptotic behavior

as given in (5), in fact since
∑

i E[ξ̃i] = 0 and
∑

i V ar(ξ̃i) = 1, then
∑

i ξ̃i is tight ([10]), i.e. the

convergence speed of
∑

i ξi −
∑

i E[ξi] to zero is
√

n
√

V ar(ξi) → 0.

ii) If γ = 1, then it turns out that

V ar(ξ1) = V1 + V6 + V7 ∼ V1 = E[X2
1X2

2 ] = h2

∫

0<x1≤ε

x2
1ν⊥(dx1)

∫

0<x1≤ε

x2
1ν⊥(dx1)

= h2ε4−α1−α2C1(2)C2(2), (24)

and thus, recalling (22), (6) is verified.

iii) If γ = 0 then V ar(ξ1) ∼ V3 + V5 + V7 and it turns out that

V ar(ξ1) ∼











V3 if α1 > α2u

V3 ∼ V5 ∼ V7 if α1 = α2u

V7 if α1 < α2u,

and, recalling (21), (7) follows.

Proof of Proposition 4.4 i) Case γ ∈ (0, 1). We compute

√
nV ar(ξ1)

nE[ξ1]
by using the information (rate

of nE[ξ1] and of
√

nV ar(ξ1)) summarized in (5) in the four different cases 1) α1 ∈ (0, α2u], α2 > 1;

2) α1 ∈ (0, α2u], α2 = 1; 3) α1 ∈ (α2u, x⋆]; 4)α1 ∈ (x⋆, α2]. In the cases 1), 2), 3) we have α1 ≤ x⋆ < α2,

thus α1 6= α2, and we reach that a sufficient condition for

√
nV ar(ξ1)

nE[ξ1]
→ 0 is u ∈ ( 1

2+α2−α1
, 1

2 ). However

x⋆ < 2 + α2 − 1/u, thus if α1 ≤ x⋆, then α1 < 2 + α2 − 1/u, which is equivalent to u > 1
2+α2−α1

. On the

other hand, in the case 4) we reach

√
nV ar(ξ1)

nE[ξ1]
→ 0 for any u ∈ (0, 1/2).

Case γ = 0. We now look at (7). Here we separately study the regions {α1 > α2u}; {α1 = α2u};
{α1 < α2u, α2 > 1}; {α1 < α2u, α2 = 1} and conclude.

ii) and iii). For γ = 1 we look at (6) and we separately study the regions {α1 < 1 < α2}; {α1 < 1 = α2};
{α1 = 1 < α2}; {α1 = α2 = 1}; and {1 < α1 ≤ α2} and reach the results.

Proof of Theorem 4.5. Under γ = 1 = α1 = α2 we have that M (1) and M (2) are independent, and

nV ar(ξ1) = hε2. By the Lindeberg-Feller Theorem, recalling that

ξ̃i =
ξi − E[ξ1]

√

nV ar(ξ1)
,

it is sufficient to show that for all δ > 0 we have nE[ξ̃2
1I{|ξ̃1|>δ}] → 0. We begin evaluating P{|ξ̃1| > δ} :

by using that when γ = 1 = α1 = α2 we have nE[ξ1]√
nV ar(ξ1)

→ 0, hA1 = hA2 and X1 = Xε
1 has the same

law as X2 = Xε
2 , we obtain

P{|ξ̃1| > δ} ≤ P{|ξ1| >
δ

2

√

nV ar(ξ1)} = P{|M ′(1)
h ||M ′(2)

h | >
δ

2

√

nV ar(ξ1)}

≤ P{|X1||X2| + hA2|X1| + hA1|X2| + h2A1A2 >
δ

2

√

nV ar(ξ1)} ≤

P{|X1||X2| >
δ

8

√

nV ar(ξ1)} + 2P{hA2|X1| >
δ

8

√

nV ar(ξ1)} + P{h2A1A2 >
δ

8

√

nV ar(ξ1)}. (25)

Now, for sufficiently small h last term is 0, because

h2A1A2
√

nV ar(ξ1)
=

h2 log2 1
ε√

hε
= h

3
2−u log2 1

ε
→ 0.
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We now evaluate the other 2 probabilities in (25) to establish their magnitude orders:

P{|X1||X2| >
δ

8

√

nV ar(ξ1)} ≤ E
[

|X1||X2|
]

K
√

hε
≤ ||X1||2||X2||2

K
√

hε

=
E

[

(
∫ ti

ti−1

∫

0<x≤ε
x2ν(1))2

]

K
√

hε
=

hε2−α1

K
√

hε
= K

√
h;

and

P{hA2|X1| >
δ

8

√

nV ar(ξ1)} ≤ hA2E
[

|X1|
]

K
√

nV ar(ξ1)
≤ hA2

√
hε2−α1

K
√

hε
= h1−u

2 log
1

ε
.

Noting that
h1− u

2 log 1
ε√

h
→ 0, it follows that

P{|ξ̃1| > δ} ≤ K
√

h.

Now, for any conjugate exponents p, q,

nE[ξ̃2
1I{|ξ̃1|>δ}] ≤ nE

1
p [ξ̃2p

1 ]P
1
q {|ξ̃1| > δ} ≤ nE

1
p [ξ̃2p

1 ]h
1
2q .

We now evaluate

E[ξ̃2p
1 ] = E

[( ξ1
√

nV ar(ξ1)
− E[ξ1]

√

nV ar(ξ1)

)2p]

≤ KE
[( ξ1

√

nV ar(ξ1)

)2p]

+ K
( E[ξ1]

√

nV ar(ξ1)

)2p

.

Recall that we are under the conditions for which nE[ξ1]√
nV ar(ξ1)

→ 0, thus at least E[ξ1]√
nV ar(ξ1)

≤ Kh. On the

other hand

E
[ ξ2p

1

(nV ar(ξ1))p

]

≤ K
(E[(X1X2)

2p]

(nV ar(ξ1))p
+ 2

E[(hA2)
2pX2p

1 ]

(nV ar(ξ1))p
+

E[(h2A1A2)
2p]

(nV ar(ξ1))p

)

:

the last term contributes with
(

h3/2−u log2 1
ε

)2p

; the second term, by the Burkholder-Davis-Gundi in-

equality, is dominated by

K
(h2 log2 1

ε

∫ ti

ti−1

∫ ε

0
x2ν(1)(dx)

hε2

)p

=
(

h2−u log2 1

ε

)p

;

and the first term is
E[X2p

1 X2p
2 ]

(hε2)p
=

E2[X2p
1 ]

(hε2)p
≤ K

(hε)2p

(hε2)p
= Khp.

Thus

E[ξ̃2p
1 ] ≤ K

(

h2p +
(

h3/2−u log2 1

ε

)2p

+
(

h2−u log2 1

ε

)p

+ hp
)

∼ hp.

It follows that

nE
1
p [ξ̃2p

1 ]h
1
2q ≤ Kn

(

hp
)

1
p

h
1
2q = Kh

1
2q → 0,

as we announced.

Proof of (9). In the case γ ∈ [0, 1) we have
∑n

i=1 ξ ∼ nE[ξ1]. Using (8) we have that on {α1 ≤ α2u, α2 =

1} ∪ {α1 ≤ α2u, α2 > 1} ∪ {α1 = α2u, α2 > 1} both α1 < α⋆
1 and nE[ξ1]/

√
h → 0. On {α1 > α2u} then

nE[ξ1]/
√

h → 0 iff α1 < α⋆
1.

In the case γ = 1 then on {α1 < 1, α2 ≥ 1} ∪ {α1 = 1, α2 > 1} we have α1 < α⋆⋆
1 and

∑n
i=1 ξ ∼ nE[ξ1]

iff u > 1/(2 + α2 − α1). If u > 1/(2 + α2 − α1) then nE[ξ1]/
√

h → 0, if u < 1/(2 + α2 − α1) then
∑n

i=1 ξi/
√

h ∼
√

nV ar(ξ1)/
√

h → 0; if u = 1/(2 + α2 − α1) then nE[ξ1] ∼
√

nV ar(ξ1) <<
√

h and the
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tightness result implies that still
∑n

i=1 ξi/
√

h → 0.

On {1 < α1 ≤ α2}: if u > 1
α1+α2

then
∑n

i=1 ξ ∼ nE[ξ1] and nE[ξ1]/
√

h → 0 iff α1 < α⋆⋆
1 . On the

other hand u ≤ 1
α1+α2

is equivalent to α1 ≤ 1/u − α2, which is less than α⋆⋆
1 , and if u ≤ 1

α1+α2
then

∑n
i=1 ξ ∼

√

nV ar(ξ1) and
√

nV ar(ξ1)/
√

h → 0.

Lemma 5.3. Let, for i=1..n, Ai ⊂ Ω be independent on W (1) and W (2) and s.t. P (Ai) ≤ θ2. If σ(m)

satisfy (10), then

i) 1
θ2

∑n
i=1

∫ ti

ti−1
σ

(1)
s dW

(1)
s

∫ ti

ti−1
σ

(2)
s dW

(2)
s IAi

∼ 1
θ2

∑n
i=1 σ

(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)IAi

.

ii) Any P (Ai) be, E[|∑n
i=1 σ

(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)IAi

|] ≤ cP (Ai).

Proof i) Denote σtj
= σj . We have σs = σi−1 + (σs − σi−1), thus

1

θ2

n
∑

i=1

[

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s − σ
(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)

]

IAi
= (26)

1

θ2

n
∑

i=1

[

σ
(1)
i−1∆iW

(1)

∫ ti

ti−1

(σ(2)
s − σ

(2)
i−1)dW (2)

s +

∫ ti

ti−1

(σ(1)
s − σ

(1)
i−1)dW (1)

s σ
(1)
i−1∆iW

(1)+

∫ ti

ti−1

(σ(1)
s − σ

(1)
i−1)dW (1)

s

∫ ti

ti−1

(σ(2)
s − σ

(2)
i−1)dW (2)

s

]

IAi
:

E
[(

∫ ti

ti−1
(σ

(1)
s −σ

(1)
i−1)dW

(1)
s

)2]

= E
[

∫ ti

ti−1
(σ

(1)
s −σ

(1)
i−1)

2ds
]

=
∫ ti

ti−1
E[(σ

(1)
s −σ

(1)
i−1)

2]ds, and by assumption

(10) this is dominated by ch2, while by the boundedness of σ(m) we have E
[

(

σ
(m)
i−1∆iW

(m)
)2

]

≤ ch. Now

write each term of the rhs of (26) as

1

θ2

n
∑

i=1

H
(1)
i H

(2)
i IAi

:

using the independence assumption, its 1-norm is dominated by

1

θ2

n
∑

i=1

||H(1)
i ||2||H(2)

i ||2P (Ai) ≤ cnh
3
2 → 0.

ii) Similarly, E[|∑n
i=1 σ

(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)IAi

|] ≤ ∑n
i=1 E[|∑n

i=1 σ
(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)|]P (Ai) ≤

cP (Ai).

Lemma 5.4. We have

1

θm

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{∆iṼ (m)≥1}
ucp→ IC.

Proof By the independence of each W (j) on Ñ (m), using Lemma 5.3 and Lemma 5.1 we have

1

θm

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{∆iṼ (m)≥1}

∼ 1

θm

n
∑

i=1

σ
(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)I{∆iṼ (m)≥1}

.
=

n
∑

i=1

ηi.
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Further we have

n
∑

i=1

Ei−1[ηi] =
1

θm

n
∑

i=1

σ
(1)
ti−1

σ
(2)
ti−1

Ei−1[∆iW
(1)∆iW

(2)]P{∆iṼ
(m) ≥ 1}.

Now Ei−1[∆iW
(1)∆iW

(2)] = Ei−1[
∫ ti

ti−1
ρsds], and P{∆iṼ

(m) ≥ 1} = 1−e−λmh with λm = νm(
√

rh, +∞)

= Um(
√

rh) = cm
r
− αm

2
h

αm
, thus

n
∑

i=1

Ei−1[ηi] =
1

θm

n
∑

i=1

σ
(1)
ti−1

σ
(2)
ti−1

Ei−1[

∫ ti

ti−1

ρsds](1 − e−λmh).

However, by the fact that |1− e−λmh −λmh| ≤ Kh2, the last display has the same limit in probability as

1

θm

n
∑

i=1

σ
(1)
i−1σ

(2)
i−1Ei−1[

∫ ti

ti−1

ρsds]λmh. (27)

Further,

1

θm
E

[

n
∑

i=1

|σ(1)
ti−1

σ
(2)
ti−1

|
∣

∣

∣
Ei−1[

∫ ti

ti−1

ρsds] − ρti−1

∣

∣

∣
λmh

]

≤

1

θm
E

[

n
∑

i=1

|σ(1)
ti−1

σ
(2)
ti−1

|Ei−1[

∫ ti

ti−1

|ρs − ρti−1 |ds]λmh
]

≤ Knh2

θm
≤ Kr

αm
2

h → 0,

and this implies that (27) has the same limit in probability as

1

θm

n
∑

i=1

σ
(1)
ti−1

σ
(2)
ti−1

ρti−1h
cm

αm
θm

P→ cm

αm
IC.

However by separating σ
(1)
i−1σ

(2)
i−1ρi−1 = (σ

(1)
i−1σ

(2)
i−1ρi−1)

+ − (σ
(1)
i−1σ

(2)
i−1ρi−1)

− and applying the reasoning

indicated in [8], just before (3.5), we reach that such a convergence is also ucp. Further

n
∑

i=1

Ei−1[η
2
i ] =

1

θ2
m

n
∑

i=1

(σ
(1)
ti−1

σ
(2)
ti−1

)2Ei−1[(∆iW
(1))2(∆iW

(2))2]P{∆iṼ
(m) ≥ 1} :

by using (2) we find that Ei−1[(∆iW
(1))2(∆iW

(2))2] ≤ Kh2, thus

n
∑

i=1

Ei−1[η
2
i ] ≤ K

1

θ2
m

hθm

n
∑

i=1

(σ
(1)
ti−1

σ
(2)
ti−1

)2h ∼ h

θm

∫ T

0

(σ(1)
s σ(2)

s )2ds ∼ εαm → 0.

Thus, by Lemma 4.2 in [8], the thesis follows.

For two random sequences Un and Vn with Vn 6= 0,∀n, and a a constant, let us denote Un ≈ aVn

when as n → ∞ we have Un/Vn → a in probability.

Lemma 5.5. We have

1

θ1

n
∑

i=1

σ
(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)I{∆iṼ (1)≥1,∆iṼ (2)≥1}

ucp→ (1 − γ)
c1

α1
IC · I{γ∈[0,1)}.

Proof Let us start by proving that

P{∆iṼ
(1) ≥ 1,∆iṼ

(2) ≥ 1} ≈ (1 − γ)θ1
c1

α1
I{γ∈[0,1)} + θ1θ2

c1

α1

c2

α2
I{γ=1}. (28)
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In fact, with ε =
√

rh,

{∆iṼ
(1) ≥ 1, ∆iṼ

(2) ≥ 1} =
{

µ(]ti−1, ti]× (ε+∞)× [0,+∞)) ≥ 1, µ(]ti−1, ti]× [0,+∞)× (ε+∞)) ≥ 1
}

,

this is the set where during the time interval ]ti−1, ti] the bivariate jump sizes fall within the disjoint

union D1 ∪ D2 ∪ D3, with

D1 = (ε, +∞) × [0, ε], D2 = (ε, +∞) × (ε, +∞), D3 = [0, ε] × (ε, +∞),

and it coincides with the disjoint union

{

µ(]ti−1, ti] × D2) ≥ 1
}

∪
{

µ(]ti−1, ti] × D2) = 0, µ(]ti−1, ti] × D1) ≥ 1, µ(]ti−1, ti] × D3) ≥ 1
}

.

Thus

P{∆iṼ
(1) ≥ 1, ∆iṼ

(2) ≥ 1} = 1 − e−λD2
h+

P
{

µ(]ti−1, ti] × D2) = 0
}

P
{

µ(]ti−1, ti] × D1) ≥ 1
}{

µ(]ti−1, ti] × D3) ≥ 1
}

= 1 − e−λD2
h + e−λD2

h(1 − e−λD1
h)(1 − e−λD3

h) ∼ λD2h + λD1λD3h
2,

where λDj
= νγ(Dj). In view of (4) and of the shape of f(x) (see figure 1) due to our choice of the

parameters, we have

λD1
= γ

∫

(ε,+∞)

ν(1)(dx1) = γU1(ε) = γc1
ε−α1

α1
,

λD2 = (1 − γ)

∫

(ε,+∞[×(ε,+∞[

1ν‖(dx1, dx2) :

ν‖ only weights the points (x1, x2) with x2 = f(x1), and f(x1) > ε means that x1 > f−1(ε), and recall

that f−1(ε) < ε, thus

λD2 = (1 − γ)ν1(ε, +∞) = (1 − γ)U1(ε) = (1 − γ)c1
ε−α1

α1
;

λD3
= γ

∫

(ε,+∞)

ν(2)(dx2) + (1 − γ)

∫

x1∈(0,ε],x2=f(x1)>ε

ν(1)(dx1) :

recall that f = U−1
2 ◦ U1, so we have

λD3 = γU2(ε) + (1 − γ)

∫ ε

f−1(ε)

ν(1)(dx1) = γU2(ε) + (1 − γ)(U1(f
−1(ε)) − U1(ε))

= γU2(ε) + (1 − γ)U2(ε) − (1 − γ)U1(ε) = c2
ε−α2

α2
− (1 − γ)c1

ε−α1

α1
.

However if γ 6= 1 then λD2h = (1 − γ)θ1
c1

α1
is the leading term within P{∆iṼ

(1) ≥ 1, ∆iṼ
(2) ≥ 1},

because
λD1

λD3
h2

λD2
h

=
γ

1 − γ
ε−α2h

( c2

α2
− (1 − γ)

c1

α1
εα2−α1

)

which either tends to 0 or is 0.

If γ = 1 then λD2
= 0 and P{∆iṼ

(1) ≥ 1, ∆iṼ
(2) ≥ 1} = λD1

λD3
h2 = θ1θ2

c1

α1

c2

α2
. Thus (28) is verified.

Let us now define

n
∑

i=1

1

θ1
σ

(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)I{∆iṼ (1)≥1,∆iṼ (2)≥1} =

n
∑

i=1

χi :
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by the independence of each W (m) on each Ṽ (ℓ), we have

n
∑

i=1

Ei−1[χi] =

n
∑

i=1

σ
(1)
ti−1

σ
(2)
ti−1

∫ ti

ti−1

ρsds
[

(1− γ)
c1

α1
I{γ∈[0,1)} + θ2

c1

α1

c2

α2
I{γ=1}

]

P→ (1− γ)
c1

α1
IC · I{γ∈[0,1)};

as in the previous Lemma, we reach that such a convergence is also ucp. Further

n
∑

i=1

Ei−1[χ
2
i ] ≤ K

hθ1

θ2
1

≤ Kεα1 → 0,

so, by Lemma 4.2 in [8], the thesis follows.

Proof of Theorem 4.7.

We can write

ˆIC − IC =

4
∑

k=1

Ik, (29)

where

I1 =
[

n
∑

i=1

∆iY
(1)∆iY

(2)I{|∆iY (1)|≤2
√

rh}I{|∆iY (2)|≤2
√

rh} − IC
]

,

I2 =
n

∑

i=1

∆iY
(1)∆iY

(2)
(

I{|∆iX(1)|≤√
rh}I{|∆iX(2)|≤√

rh} − I{|∆iY (1)|≤2
√

rh}I{|∆iY (2)|≤2
√

rh}

)

,

I3 =

n
∑

i=1

(∆iY
(1)∆iM

(2) + ∆iY
(2)∆iM

(1))I{|∆iX(1)|≤√
rh}I{|∆iX(2)|≤√

rh},

I4 =

n
∑

i=1

∆iM
(1)∆iM

(2)I{|∆iX(1)|≤√
rh}I{|∆iX(2)|≤√

rh}.

We know that I1/
√

h
st−→ U, with U mixed Gaussian r.v. ([16]). We are now going to show that:

I2 ∼
n

∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{|∆iṼ (2)|>√
rh} ∼ θ2 = hr

−α2
2

h , I3 <<
√

h

and I4 is the sum of
∑n

i=1 ξi with some other terms which however are negligible wrt one of the terms√
h, θ2 or

∑n
i=1 ξi. That will prove (12). It then turns out that none of the terms appearing in (12) is

always negligible, while depending on the combination of the parameters γ, α1, α2 the leading term is

different, and we show (13).

Let us start dealing with I2 : we have

I2 =
n

∑

i=1

∆iY
(1)∆iY

(2)
(

I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}∩{|∆iY (1)|≤2
√

rh,|∆iY (2)|≤2
√

rh}c

−I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}c∩{|∆iY (1)|≤2
√

rh,|∆iY (2)|≤2
√

rh}

)

.

We first show that the first rhs term above

I2,1
.
=

n
∑

i=1

∆iY
(1)∆iY

(2)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}∩{|∆iY (1)|≤2
√

rh,|∆iY (2)|≤2
√

rh}c

is negligible wrt θ2. In fact, on {|∆iX
(1)| ≤ √

rh, |∆iX
(2)| ≤ √

rh}∩{|∆iY
(1)| ≤ 2

√
rh, |∆iY

(2)| ≤ 2
√

rh}c

we have |∆iY
(m)| > 2

√
rh for at least one m ∈ {1, 2}, and, using Remark 3.1, |∆iJ

(m)| + K
√

h ln 1
h ≥

26



|∆iD
(m)+∆iJ

(m)| = |∆iY
(m)| > 2

√
rh implies that, for any p ∈ (0, 1), for sufficiently small h, |∆iJ

(m)| ≥
2
√

rh(1 − p), thus |∆iJ
(m)| 6= 0. However |∆iX

(m)| ≤ √
rh, and so |∆iJ

(m) + ∆iM
(m)| − |∆iD

(m)| <

|∆iX
(m)| ≤ √

rh implies on one hand that |∆iJ
(m) +∆iM

(m)| <
√

rh(1+p), and on the other hand that,

considering a sufficiently small h, 1−|∆iM
(m)| < |∆iJ

(m)|−|∆iM
(m)| < |∆iJ

(m)+∆iM
(m)| <

√
rh(1+p),

and thus, for sufficiently small h, |∆iM
(m)| > 1−√

rh(1 + p) >
√

rh. It follows that ∀i = 1..n there is an

index mi s.t. {|∆iX
(1)| ≤ √

rh, |∆iX
(2)| ≤ √

rh} ∩ {|∆iY
(1)| ≤ 2

√
rh, |∆iY

(2)| ≤ 2
√

rh}c ⊂ {∆iN
(mi) 6=

0, ∆iM
(mi) >

√
rh}, thus, using Lemma 5.2 point 1,

P

{

I2,1

θ2
6= 0

}

≤
n

∑

i=1

P{∆iN
(mi) 6= 0,∆iM

(mi) >
√

rh} ≤ c
h

rh
→ 0,

which implies that
I2,1

θ2

P−→ 0, as we stated.

We now deal with the second term of I2 : on {|∆iY
(m)| ≤ 2

√
rh} we have |∆iJ

(m)| − |∆iD
(m)| <

|∆iY
(m)| ≤ 2

√
rh and thus, with p as above, a.s., for sufficiently small h, |∆iJ

(m)| < 2
√

rh(1 + p) < 1,

which implies that ∆iJ
(m) = 0, i.e. ∆iY

(m) = ∆iD
(m). Thus, calling

Bi = {|∆iX
(1)| ≤ √

rh, |∆iX
(2)| ≤ √

rh}c ∩ {|∆iY
(1)| ≤ 2

√
rh, |∆iY

(2)| ≤ 2
√

rh},

we have
n

∑

i=1

∆iY
(1)∆iY

(2)IBi
=

4
∑

k=2

I2,k,

where

I2,2 =

n
∑

i=1

∫ ti

ti−1

a(1)
s ds

∫ ti

ti−1

a(2)
s ds IBi

,

I2,3 =

n
∑

i=1

(

∫ ti

ti−1

a(2)
s ds

∫ ti

ti−1

σ(1)
s dW (1)

s +

∫ ti

ti−1

a(1)
s ds

∫ ti

ti−1

σ(2)
s dW (2)

s

)

IBi
,

I2,4 =

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s IBi
.

We show that I2,4 is the leading term and it asymptotically behaves as θ2.

As for I2,2, by the boundedness of each a(m) we have E[| I2,2|
θ2

] ≤ h
θ2

→ 0.

As for I2,3, note that on {|∆iX
(m)| >

√
rh, |∆iJ

(m)| = 0} we have |∆iM
(m)|+K

√

h ln 1
h > |∆iM

(m)|+

|∆iD
(m)| ≥ |∆iD

(m) + ∆iM
(m)| = |∆iX

(m)| >
√

rh thus |∆iM
(m)| >

√
rh − K

√

h ln 1
h >

√
rh(1 − p) (p

as above, h sufficiently small). Using also Lemma 5.2 point 7 and noting that θ1 ≤ θ2, it follows that

E[|I2,3|]
θ2

≤ 1

θ2
c

n
∑

i=1

h

√

h ln
1

h

(

P{|∆iM
(1)| > c

√
rh} + P{|∆iM

(2)| > c
√

rh}
)

≤

c

√

h ln 1
h

θ2
(θ1 + θ2) ≤ c

√

h ln
1

h
→ 0.

As for I2,4, firstly we show that

I2,4

θ2
∼ 1

θ2

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s

(

I{|∆iX(1)|>√
rh} + I{|∆iX(2)|>√

rh}

)

: (30)
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in fact, let us begin showing that

I2,4

θ2
∼ 1

θ2

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}c :

1

θ2
E

[

n
∑

i=1

|
∫ ti

ti−1

σ(1)
s dW (1)

s ||
∫ ti

ti−1

σ(2)
s dW (2)

s |I{|∆iX(m)|≤√
rh,m=1,2}c∩{|∆iY (m)|≤2

√
rh,m=1,2}c

]

≤

1

θ2
E

[

n
∑

i=1

|
∫ ti

ti−1

σ(1)
s dW (1)

s ||
∫ ti

ti−1

σ(2)
s dW (2)

s |
(

I{∆iN(1) 6=0} + I{∆iN(2) 6=0}
)

]

, (31)

and

n
∑

i=1

E
[
∣

∣

∣

∫ ti

ti−1
σ

(1)
s dW

(1)
s

∫ ti

ti−1
σ

(2)
s dW

(2)
s

∣

∣

∣
I{∆iN(m) 6=0}

]

θ2
∼

n
∑

i=1

E[|σ(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)|I{∆iN(m) 6=0}]

θ2

≤ 1

θ2

n
∑

i=1

||σ(1)
ti−1

∆iW
(1)||p||σ(2)

ti−1
∆iW

(2)||qP{∆iN
(m) ≥ 1} ∼ nh2

θ2
= εα2 → 0.

Now we are left with

1

θ2

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}c ,

where we see indicators of type I(A∩B)c = IAc + IBc − IAc∩Bc . If we show that

1

θ2

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s IAc∩Bc → 0

then (30) is proved.

So we deal with

1

θ2

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{|∆iX(1)|>√
rh,|∆iX(2)|>√

rh} :

this is asymptotically equivalent to

1

θ2

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{|∆iṼ (1)|≥1,|∆iṼ (2)|≥1}] (32)

because

E

[
∣

∣

∣

∣

∣

1

θ2

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s

(

I{|∆iX(1)|>√
rh,|∆iX(2)|>√

rh} − I{∆iṼ (1)≥1,∆iṼ (2)≥1}

)

∣

∣

∣

∣

∣

]

≤

E

[

1

θ2

n
∑

i=1

∣

∣

∣

∣

∣

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s

∣

∣

∣

∣

∣

(

I{|∆iX(m)|>√
rh,m=1,2, but ∆iṼ (ℓ)=0 for at least one index ℓi}

(33)

+I{∆iṼ (m)≥1,m=1,2, but |∆iX(ℓ)|≤√
rh for at least one index ℓi}

)]

and on {|∆iX
(ℓi)| >

√
rh, ∆iṼ

(ℓi) = 0} either ∆iJ
(ℓi) 6= 0 or ∆iJ

(ℓi) = 0. In this last case we have no

jumps of X(ℓi) bigger than
√

rh, and |∆iM
(ℓi)| + |∆iD

(ℓi)| ≥ |∆iX
(ℓi)| = |∆iD

(ℓi) + ∆iM
(ℓi)| >

√
rh

implies that, for any fixed small p > 0, for sufficiently small h, |∆iM
(ℓi)| >

√
rh(1 − p); further also
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on {∆iṼ
(ℓi) ≥ 1, |∆iX

(ℓi)| ≤ √
rh}, either ∆iJ

(ℓi) 6= 0 or ∆iJ
(ℓi) = 0, and in this last case we have

|∆iM
(ℓi)| = |∆iX

(ℓi) − ∆iD
(ℓi)| ≤ |∆iX

(ℓi)| + |∆iD
(ℓi)| ≤ √

rh(1 + p). Thus (33) is dominated by

E

[

1

θ2

n
∑

i=1

∣

∣

∣

∣

∣

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s

∣

∣

∣

∣

∣

(

I{|∆iM(ℓi)|>√
rh(1−p),∆iṼ (ℓi)=0}+

I{∆iṼ (ℓi)≥1,|∆iM(ℓi)|≤√
rh(1+p)} + I{∆iJ(ℓi) 6=0}

)]

.

Now, using the independence, the H
..
older inequality, Lemma 5.2, points 3 and 6, and recalling that

θ1 ≤ θ2, then ∀q ∈ (0, 1 − p) the previous display is dominated by

ch

θ2

n
∑

i=1

(

P{|∆iM
(ℓi)| >

√
rh(1 − p), ∆iṼ

ℓi = 0} + P{∆iṼ
ℓi ≥ 1, |∆iM

(ℓi)| ≤ √
rh(1 + p)}

+P{∆iJ
(ℓi) 6= 0}

)

≤ K
(θ

4
3
2 + θ2(q

−α − 1) + θ2(1 − (1 + 2p)−α) + h)

θ2
→ K((q−α − 1) + (1 − (1 + 2p)−α).

However that holds for any q ∈ (0, 1− p) and any p ∈ (0, 1): we take p → 0 and q → 1 and we reach that

the limit in probability of (33) is 0 and (32) is true.

Now, by Lemma 5.3 and Lemma 5.4, (32) has the same rate as

1

θ2

n
∑

i=1

σ
(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)I{|∆iṼ (1)|≥1,|∆iṼ (2)|≥1}] ∼

θ1

θ2
,

and thus is negligible if α1 < α2, otherwise, if α1 = α2, it contributes to I2,4 by adding some constants

in the limit.

Secondly, by reasoning exactly as for (32) we have

1

θ2

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{|∆iX(m)|>√
rh} ∼ 1

θ2

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{∆iṼ (m)≥1},

which, by Lemma 5.4, has rate θm. However θ1 ≤ θ2, thus

I2 ∼ I2,4 ∼
n

∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{∆iṼ (2)≥1} ∼ θ2.

We now show that I3 in (29) is negligible wrt
√

h. Here we adjust to the bivariate case the proof given

in [5] for the univariate case. I3/
√

h is the sum of two terms of type

1√
h

n
∑

i=1

∆iY
(m)∆iM

(ℓ)I{|∆iX(1)|≤√
rh}I{|∆iX(2)|≤√

rh} (34)

with (m, ℓ) ∈ {(1, 2), (2, 1)}, and we can treat both the terms at the same time. The expression in (34)

equals

1√
h

n
∑

i=1

∆iD
(m)∆iM

(ℓ)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh} +
1√
h

n
∑

i=1

∆iJ
(m)∆iM

(ℓ)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}.

(35)
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As for the second term, as already commented just after the definition of I2,1, on {|∆iX
(m)| ≤ √

rh, ∆iJ
(m) 6=

0} we have {|∆iM
(m)| >

√
rh}, thus, by Lemma 5.2 point 1,

P
{ 1√

h

n
∑

i=1

∆iJ
(m)∆iM

(ℓ)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh} 6= 0
}

≤
n

∑

i=1

{∆iJ
(m) 6= 0, |∆iM

(m)| >
√

rh} → 0,

thus the second term of (35) tends to 0 in probability.

As for the first term, on {|∆iX
(ℓ)| ≤ √

rh} we have |∆iX
(ℓ)| > |∆iZ

(ℓ)| − |∆iD
(ℓ)| then |∆iZ

(ℓ)| <

|∆iX
(ℓ)| + |∆iD

(ℓ)| ≤ √
rh +

√

h ln 1
h ≤ 2

√
rh, thus

1√
h

n
∑

i=1

∆iD
(m)∆iM

(ℓ)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh} ≤

1√
h

n
∑

i=1

∆iD
(m)∆iM

(ℓ)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh,|∆iZ(ℓ)|≤2
√

rh} :

the terms where ∆iJ
(ℓ) 6= 0 are negligible, in fact as above we have

P
{ 1√

h

n
∑

i=1

∆iD
(m)∆iM

(ℓ)I{|∆iX(ℓ)|≤√
rh,|∆iZ(ℓ)|≤2

√
rh,∆iJ(ℓ) 6=0} 6= 0} → 0.

We are left with

1√
h

n
∑

i=1

∆iD
(m)∆iM

(ℓ)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh,|∆iZ(ℓ)|≤2
√

rh,∆iJ(ℓ)=0} =

1√
h

n
∑

i=1

∆iD
(m)∆iM

(ℓ)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh,|∆iM(ℓ)|≤2
√

rh,∆iJ(ℓ)=0},

however again

P
{ 1√

h

n
∑

i=1

∆iD
(m)∆iM

(ℓ)I{|∆iX(ℓ)|≤√
rh,|∆iM(ℓ)|≤2

√
rh,∆iJ(ℓ) 6=0} 6= 0} → 0,

because on {|∆iX
(ℓ)| ≤ √

rh, |∆iM
(ℓ)| ≤ 2

√
rh, ∆iJ

(ℓ) 6= 0} we still have |∆iM
(ℓ)| >

√
rh, and we remain

with
1√
h

n
∑

i=1

∆iD
(m)∆iM

(ℓ)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh,|∆iM(ℓ)|≤2
√

rh}. (36)

Now, by Lemma 3.1 in [5] we know that on |∆iM
(ℓ)| ≤ 2

√
rh we have

∆iM
(ℓ) = ∆iM

(ℓ)h − h

∫ 1

2vh

xν(ℓ)(dx),

where ∆iM
(ℓ)h =

∫ ti

ti−1

∫

0<x≤2vh
xµ̃ℓ(dx, ds), and vh is a given sequence satisfying 0 < vh ≤ r

1/4
h , and

recall that ∆iD
(m) =

∫ ti

ti−1
a
(m)
s ds +

∫ ti

ti−1
σ

(m)
s dW

(m)
s . As a consequence, exactly as in (43) of [5], the

component

1√
h

n
∑

i=1

∫ ti

ti−1

a(m)
s ds∆iM

(ℓ)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh,|∆iM(ℓ)|≤2
√

rh}

of (36) tends to zero in probability. Now we show the negligibility of

1√
h

n
∑

i=1

∫ ti

ti−1

σ(m)
s dW (m)

s ∆iM
(ℓ)hI{|∆iX(1)|≤√

rh,|∆iX(2)|≤√
rh,|∆iM(ℓ)|≤2

√
rh} :
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in fact, by the independence of W (m) on µ̃(ℓ), the squared L2(P,Ω)-norm of the last display is dominated

by

1

h
E

[(

n
∑

i=1

∫ ti

ti−1

σ(m)
s dW (m)

s ∆iM
(ℓ)h

)2]

=
1

h

n
∑

i=1

E
[(

∫ ti

ti−1

σ(m)
s dW (m)

s

)2(

∆iM
(ℓ)h

)2]

≤ K

h
nh · h

∫ r
1/4
h

0

x2ν(ℓ)(dx) ≤ Kr
2−αℓ

4

h → 0.

Finally we show the negligibility also of

1√
h

n
∑

i=1

∫ ti

ti−1

σ(m)
s dW (m)

s h

∫ 1

2vh

xν(ℓ)(dx)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh,|∆iM(ℓ)|≤2
√

rh} :

in fact recall that h
∫ 1

2vh
xν(ℓ)(dx) = cAℓ

[

(1 − ε1−αℓ)Iαℓ 6=1 + ln 1
εIαℓ=1

]

is positive for all the values of

αℓ ∈ (0, 2), so the L1(P,Ω)-norm of the last display is dominated by

√
hcAm

[

(1 − ε1−αℓ)Iαℓ 6=1 + ln
1

ε
Iαℓ=1

]

E
[
∣

∣

∣

n
∑

i=1

∫ ti

ti−1

σ(m)
s dW (m)

s

∣

∣

∣

]

(37)

and noting that if i 6= j then E[
∫ ti

ti−1
σ

(m)
s dW

(m)
s

∫ tj

tj−1
σ

(m)
s dW

(m)
s ] = E[

∫

σ
(m)
s Is∈]ti−1,ti]σ

(m)
s Is∈]tj−1,tj ]ds]

= 0, we have

E
[
∣

∣

∣

n
∑

i=1

∫ ti

ti−1

σ(m)
s dW (m)

s

∣

∣

∣

]

≤ ||
n

∑

i=1

∫ ti

ti−1

σ(m)
s dW (m)

s ||2 =

√

√

√

√E[

n
∑

i=1

(

∫ ti

ti−1

σ
(m)
s dW

(m)
s )2] = O(1).

It follows that (37) is dominated by K
√

h
[

|1 − ε1−αℓ |Iαℓ 6=1 + ln 1
εIαℓ=1

]

→ 0.

We now deal with I4 of (29). We have

I4 =

n
∑

i=1

∆iM
(1)∆iM

(2)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh} =

n
∑

i=1

∆iM
(1)∆iM

(2)
[

I{∆iÑ(1)=0,∆iÑ(2)=0,|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}+I{∆iÑ(1)=0,∆iÑ(2)=0}c∩{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}

]

=

n
∑

i=1

∆iM
(1)∆iM

(2)
[

I{∆iÑ(1)=0,∆iÑ(2)=0} − I{∆iÑ(1)=0,∆iÑ(2)=0}∩{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}c +

I{∆iÑ(1)=0,∆iÑ(2)=0}c∩{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}

]

.

However where both ∆iÑ
(1) = 0,∆iÑ

(2) = 0, we have ∆iM
(1)∆iM

(2) = ξi, thus

I4 =

4
∑

k=1

I4,k

where

I4,1 =

n
∑

i=1

ξi, I4,2 = −
n

∑

i=1

ξiI{∆iÑ(1)=0,∆iÑ(2)=0}c , I4,3 = −
n

∑

i=1

ξiI{∆iÑ(1)=0,∆iÑ(2)=0}∩{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}c

I4,4 =

n
∑

i=1

∆iM
(1)∆iM

(2)I{∆iÑ(1)=0,∆iÑ(2)=0}c∩{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}.
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We are going to show that all the terms I4,k with k = 1, 2, 3 are negligible wrt to θ2.

As for I4,2, using again that IA∪B = IA+IB−IA∩B , it is sufficient to show that both
∑n

i=1 ξiI{∆iÑ(ℓ)≥1} <<

θ2, for ℓ = 1, 2 and
∑n

i=1 ξiI{∆iÑ(1)≥1,∆iÑ(2)≥1} << θ2. Using the independence of ξi on ∆iÑ
(ℓ), we reach

that

Ei−1[ξiI{∆iÑ(ℓ)≥1}] ∼ Ei−1[ξi]θℓ

Ei−1[ξ
2
i I{∆iÑ(ℓ)≥1}] ≤ E[ξ2

i ]θℓ.

Thus, if, for any ℓ, we call
n

∑

i=1

ξiI{∆iÑ(ℓ)≥1}
θ2

.
=

n
∑

i=1

χi,

we have that ∀t ≥ 0,
∑

ti≤t Ei−1[χi] ≤ ∑

ti≤t Ei−1[ξi] =
[

t
h

]

E[ξ1] ≤ nE[ξ1], which, by looking at

Theorem 4.3, tends to zero in all the cases γ ∈ [0, 1]. Further,
∑

ti≤t Ei−1[χi] is positive for all t and

increasing in t, thus the convergence is also ucp. Moreover ∀t ≥ 0,
∑

ti≤t Ei−1[χ
2
i ] ≤ nE[ξ2

1 ]/θ2 : recalling

that, with the notations in (23), we have

V ar(ξi) ∼











V1 + V3 if γ ∈ (0, 1)

V1 if γ = 1

V3 + V5 + V7 if γ = 0,

and E2[ξi] = V2 + V8 + h4A2
1A

2
2, and noting that V2 << V3, V8 << V5, h4A2

1A
2
2 << V7, it follows

that E2[ξi] << V ar(ξi) in all the cases, and thus E2[ξi] << E[ξ2
i ], so E[ξ2

1 ] ∼ V ar(ξ1) and we can

directly use the expressions at the denominators of (5), (6), (7) to verify that under our assumptions

nV ar(ξ1)/θ2 → 0 in all the cases γ ∈ [0, 1]. We remark that for the case γ ∈ (0, 1) and α1 ≥ x⋆ >

condition u > 1/[2(1 + α2/α1)] is needed, however it is implied by our assumption (??). It follows that
∑n

i=1 χi
ucp→ 0, that is

∑n
i=1 ξiI{∆iÑ(ℓ)≥1} << θ2.

If we now call P{∆iÑ
(1) ≥ 1,∆iÑ

(2) ≥ 1} .
= θ1,2 ≤ θ2, and

n
∑

i=1

χi
.
=

n
∑

i=1

ξiI{∆iÑ(1)≥1,∆iÑ(2)≥1}
θ2

,

we have
∑

ti≤t Ei−1[χi] =
[

t
h

]

E[ξ1]
θ1,2

θ2
≤

[

t
h

]

E[ξ1]
ucp→ 0, and

∑

ti≤t Ei−1[χ
2
i ] ≤ KnV ar(ξ1)/θ2 → 0, so

again
∑n

i=1 χi
ucp→ 0 and

∑n
i=1 ξiI{∆iÑ(1)≥1,∆iÑ(2)≥1} << θ2.

We now show that also I4,3 is negligible wrt θ2. Each term of the sum is counted only if both

∆iÑ
(j) = 0, j = 1, 2 but |∆iX

(ℓ)| >
√

rh for at least one index ℓ. Note that if ∆iÑ
(ℓ) = 0 then ∆iJ

(ℓ) = 0.

However, as commented for I2,3, we have {|∆iX
(ℓ)| >

√
rh, ∆iJ

(ℓ) = 0} ⊂ {|∆iM
(ℓ)| >

√
rh(1− p)}, and

we know that P{∆iÑ
(ℓ) = 0, |∆iM

(ℓ)| >
√

rh(1 − p)} ≤ Kθ
4/3
ℓ ≤ Kθ

4/3
2 . It follows that

E
[ |I4,3|

θ2

]

≤
∑n

i=1 ||ξi||2
√

P{∆iÑ (ℓ) = 0, |∆iM (ℓ)| >
√

rh(1 − p)}
θ2

≤ K
√

nθ
− 1

3
2

√

nV ar(ξ1). (38)

Using again the expressions of
√

nV ar(ξ1) at the denominators of (5), (6), (7) for the different choices

of γ, we have that last expression in (38) tends to zero under the following conditions:

for γ ∈ (0, 1) and α1 ≤ x⋆, iff

(a) u >
1

6 − α2/2 − 3α1/2
;

for γ ∈ (0, 1) and α1 > x⋆, iff

(b) u >
5

6 − 6α2/α1 − α2
;
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for γ = 1 under (a);

for γ = 0 and α1 < α2u, under (a), because h <
√

hε1−α1/2;

for γ = 0 and α1 ≥ α2u, under (b).

However, under our assumption (??) both the conditions (a), (b) are ensured.

Finally we show that I4,4 is negligible wrt to θ2. We have what follows:

if ∆iÑ
(2) = 0 and ∆iÑ

(1) ≥ 1, then the terms with ∆iJ
(1) 6= 0 do not contribute to I4,4/θ2, since

|∆iX
(1)| ≤ √

rh then for any p ∈ (0, 1) and sufficiently small h we have |∆iM
(1)| >

√
rh(1 − p) and then

P
{ 1

θ2

n
∑

i=1

∆iM
(1)∆iM

(2)I{∆iJ(1) 6=0,|∆iM(1)|>√
rh(1−p)} 6= 0

}

→ 0.

We then remain with the terms where ∆iJ
(1) = 0, but on {|∆iX

(1)| ≤ √
rh, ∆iJ

(1) = 0} we have

|∆iM
(1)| ≤ √

rh(1 + p). On the other hand on {∆iÑ
(2) = 0} we have ∆iJ

(2) = 0, and thus also

|∆iM
(2)| ≤ √

rh(1 + p). It follows that

E
[ 1

θ2

n
∑

i=1

|∆iM
(1)∆iM

(2)|I{∆iÑ(2)=0,∆iÑ(1)≥1}∩{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh,}

]

≤ K
rh

θ2

n
∑

i=1

P{∆iÑ
(1) ≥ 1, |∆iM

(1)| ≤ √
rh(1 + p)} ≤ K

nrhθ
4/3
1

θ2
≤ Knrhθ

1/3
2 → 0,

since assumption (??) implies u > 1/(3 − α2/2).

If ∆iÑ
(2) ≥ 1 and ∆iÑ

(1) = 0, we reason similarly as above and obtain that

E
[ 1

θ2

n
∑

i=1

|∆iM
(1)∆iM

(2)|I{∆iÑ(2)=0,∆iÑ(1)≥1}∩{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh,}

]

≤ K
rh

θ2

n
∑

i=1

P{∆iÑ
(2) ≥ 1, |∆iM

(2)| ≤ √
rh(1 + p)} ≤ K

nrhθ
4/3
2

θ2
→ 0.

If both ∆iÑ
(1) ≥ 1, ∆iÑ

(2) ≥ 1, then the terms with one ∆iJ
(ℓ) 6= 0, are negligible and we remain

with the terms where both ∆iJ
(ℓ) = 0, thus we reach that both |∆iM

(ℓ)| ≤ √
rh(1 + p) and

E
[ 1

θ2

n
∑

i=1

|∆iM
(1)∆iM

(2)|I{∆iÑ(2)≥1,∆iÑ(1)≥1}∩{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh,}

]

≤ K
rh

θ2

n
∑

i=1

P{∆iÑ
(2) ≥ 1, |∆iM

(2)| ≤ √
rh(1 + p)} → 0,

as above.

We thus obtained that ˆIC − IC ∼
√

h +
∑n

i=1 ξi + θ2. Now we are going to make this more explicit.

In (9) we compared
√

h with
∑n

i=1 ξi. As for θ2 versus
√

h we have that:

θ2 <<
√

h if α2 < 1
2u

θ2 ∼
√

h if α2 = 1
2u

θ2 >>
√

h if α2 > 1
2u .

Comparing now θ2 with
∑n

i=1 ξi, we reach that

when γ = 1 θ2 >>
∑n

i=1 ξi for α2 = α1 = 1: if u > 1
4

for (α1, α2) 6= (1, 1): ∀u ∈ (0, 1
2 )

when γ ∈ [0, 1) θ2 >>
∑n

i=1 ξi for α1 ≤ α2u: any u ∈ (0, 1
2 )

for α2 > α1 > α2u: iff u > 1
1+

α2
α1

when γ ∈ [0, 1) θ2 <<
∑n

i=1 ξi for α1 = α2: any u ∈ (0, 1
2 ).
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It follows that

ˆIC − IC ∼ Iα2≥ 1
2u

(

θ2

[

I{γ=1} + I{γ∈[0,1),α1≤α2u} + I{γ∈[0,1),α2>α1>α2u,u≥ 1

1+
α2
α1

}

]

+
n

∑

i=1

ξi

[

I{γ∈[0,1),α2>α1>α2u,u<
α1

α1+α2
} + I{γ∈[0,1),α2=α1>α2u}

]

)

Iα2< 1
2u

(

√
h
[

I{γ=1,α1<α⋆⋆
1 } + I{γ∈[0,1),α1<α⋆

1}
]

+
n

∑

i=1

ξi

[

Iγ=1,α1≥α⋆⋆
1

+ I{γ∈[0,1),α1≥α⋆
1}

]

)

.

However: 1/(2α2) > 1/4, so if α2 ≥ 1
2u then u ≥ 1

2α2
so u > 1/4; if α1 = α2 then α1 > α2u, since

α2 > α2u; α1 < 1/(2u) ⇒ α1 ≤ α⋆⋆
1 ; Thus the above display simplifies as follows:

ˆIC − IC ∼ Iα2≥ 1
2u

(

θ2

[

I{γ=1} + I{γ∈[0,1),α1≤α2u} + I{γ∈[0,1),α2>α1>α2u,u≥ 1

1+
α2
α1

}

]

+

n
∑

i=1

ξi

[

I{γ∈[0,1),α2>α1>α2u,u<
α1

α1+α2
} + I{γ∈[0,1),α2=α1}

]

)

Iα2< 1
2u

(

√
h
[

I{γ=1} + I{γ∈[0,1),α1<α⋆
1} +

n
∑

i=1

ξiIγ∈[0,1),α1≥α⋆
1

]

)

and (13) follows.

6 Notations list

∆H
(m)
t = Ht − Ht−, ∆iH

(m) .
= H

(m)
ti

− H
(m)
ti−1

, for any process H

X(m) = D(m) + Z(m) = Y (m) + M (m) :

D
(m)
t =

∫ t

0
a
(m)
s ds +

∫ t

0
σ

(m)
s dW

(m)
s

Z(m) = J (m) + M (m)

J (m) =
∫ ·
0

∫

{|γ(s,ω,x)|>1} γ(s, ω, x)µ(m)(ω, dx, ds)

M (m) =
∫ ·
0

∫

{|γ(s,ω,x)|≤1} γ(s, ω, x)µ̃(m)(ω, dx, ds)

L(m) : stable Lévy process with characteristic triplet (z(m), 0, ν(m)(dx)) :

M
(m)
t = L

(m)
t − z(m)t − ∑

s≤t ∆L
(m)
s I{|∆L

(m)
s |>1}

N
(m)
t =

∑

s≤t I{∆J
(m)
s 6=0} =

∑

s≤t I{|∆X
(m)
s |>1}

Ñ
(m)
t =

∑

s≤t I{|∆X
(m)
s |>√

rh}

Ṽ
(m)
t =

∑

s≤t I{|∆M
(m)
s |>√

rh}
M ′(m),H ′

1, L̃
′: for any process H, H ′

t
.
= Ht −

∑

s≤t ∆HsI{|∆Hs|>ε}
L̃ is a symmetric stable process: L̃ = H1 − H2 with H1t = Lt − zt
˜̃Nt =

∑

s≤t ∆I{|∆L̃s|>ε}
ξj = ξε

j
.
= ∆jM

′(1)∆jM
′(2).

αm: for Z(m) Lévy, m = 1, 2, αm is its Blumenthal Getoor index (see [6]).

∆iH⋆ := ∆iH I{(∆iH)2≤rh}, for any processes H (e.g. H = X(m) or M (m), etc.)

IC
.
=

∫ T

0
ρtσ

(1)
t σ

(2)
t dt

ˆIC =
∑n

j=1 ∆jX
(1)I{(∆jX(1))2≤r(h)}∆jX

(2)I{(∆jX(2))2≤r(h)} = ṽ
(n)
1,1 (X(1), X(2))T

ṽ
(n)
r,l (X(1), X(2))T = h1− r+l

2

∑n
j=1(∆jX

(1))rI{(∆jX(1))2≤rh}(∆jX
(2))lI{(∆jX(2))2≤rh},
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w̃(n)(X(1), X(2))T
.
=h−1

∑n−1
j=1

∏1
i=0 ∆j+iX

(1)I{(∆j+iX(1))2≤rh}
∏1

i=0 ∆j+iX
(2)I{(∆j+iX(2))2≤rh},

ν(m)(dxm) = cmx−1−αm
m I{xm>0}dxm

νγ Lévy measure of the Lévy process (L(1), L(2))

νε(dx1, dx2) = I{0≤x1,x2≤ε}νγ(dx1, dx2),

Um(xm) := ν(m)
(

[xm, +∞[
)

= cm
x−αm

m

αm
, xm > 0

U(x1, x2) = νγ([x1, +∞) × [x2,+∞)) = Cγ(U1(x1), U2(x2))

Cγ(u, v) = γC⊥(u, v) + (1 − γ)C‖(u, v) : C⊥(u, v) = uI{v=∞} + vI{u=∞}, C‖(u, v) = u ∧ v

c,K are mute names for constants

C(k, m)
.
= c2

(

α2c1

α1c2

)
k

α1 1
m+

α2
α1

k−α2
> 0;

Cm(k) = cm

k−αm

A = γC1(2)I{α1≤α2} + (1 − γ)C(2, 0)I{α1=α2}
Aε

m
.
=

∫

ε≤xm≤1
xmν(m)(dxm), cAm

.
= cm

1−αm
Iαm 6=1 + cmIαm=1.

Xε
m

.
=

∫ h

0

∫

|x|≤ε
xµ̃(m)(dx, dt)

ε = hu =
√

rh, u ∈ (0, 1
2 )

x⋆ =
1+2u−

√
−4(2α2−1)u2+4u+1

2u ∈ (0, α2).

α⋆
1

.
= α2u

α2u−u+1/2 ∈ (2u, 1)

α⋆⋆
1

.
= 1+2u(2−α2)

2u > 1
2u > 1,

θm = hr
−αm

2

h

θ̃m = hεαm

Bi = {|∆iX
(1) ≤ √

rh|, |∆iX
(2) ≤ √

rh|}c ∩ {|∆iY
(1)| ≤ 2

√
rh, |∆iY

(2)| ≤ 2
√

rh}
||U ||p = E

1
p [|U |p], for any r.v. U

N is a standard Gaussian rv

σj = σtj

f(h) ∼ g(h): for two deterministic functions f , g, f(h) ∼ g(h) means that as h → 0 we have both

f(h) = O(g(h)) and g(h) = O(f(h))

f(h) << g(h) : means that f(h) = o(g(h))

OP : given two random sequences Un and Vn, Un = OP (Vn) if there exists n̄: for all n ≥ n̄ we have that

for any ǫ > 0, there exists a constant η > 0 such that P (|Un| > η|Vn|) < ǫ

Un ∼ Vn: for two random sequences Un and Vn, Un ∼ Vn when as n → ∞ we have both Un = OP (Vn)

and Vn = OP (Un)

Un ≈ aVn: for two random sequences Un and Vn with Vn 6= 0, ∀n, and a a constant, let us denote

Un ≈ aVn when as n → ∞ we have Un/Vn → a in probability.
ucp→ denotes convergence in probability uniformly on [0, T ]
P→ denotes convergence in probability
st→ denotes stable convergence in law
d→ denotes convergence in law

SM 0 semimartingale, BSM = Brownian semimartingale

wlg= without loss of generality

rhs= right hand side, lhs= left hand side

wrt = with respect to

iff = if and only if

rv = random variable
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